Publications by authors named "B A Bartlett"

Serum albumin has myriad uses in biotechnology, but its value as a nanocarrier or nanoplatform for therapeutics is becoming increasingly important, notably with albumin-bound chemotherapeutics. Another emerging field is the fabrication of biopolymeric nanoparticles using albumin as a building block to achieve highly-tunable nonimmunogenic capsules or scaffolds that may be cheaply and reliably produced. The aim of this study was to characterize and optimize the desolvation process used for fabrication of albumin nanoparticles under ambient conditions, studying both glutaraldehyde (GT) and glucose (GLU) as crosslinking agents and the effect of various synthesis conditions including pH, electrolyte concentration, and rate of desolvation on particle size and stability.

View Article and Find Full Text PDF

During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme - the senescence-associated secretory phenotype (SASP) - driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear.

View Article and Find Full Text PDF

This case report discusses a rare pediatric case of granulomatosis with polyangiitis (GPA) presenting with hemoptysis, migratory polyarthralgia, significant laboratory abnormalities, and imaging findings. GPA is a form of vasculitis that primarily affects the upper and lower respiratory tracts and the kidneys. Pediatric cases, though rare, offer a distinct set of clinical challenges.

View Article and Find Full Text PDF

Blood transfusion is a common therapeutic intervention in hospitalized patients. There are numerous indications for transfusion, including anemia and coagulopathy with deficiency of single or multiple coagulation components such as platelets or coagulation factors. Nevertheless, the practice of transfusion in critically ill patients has been controversial mainly due to a lack of evidence and the need to consider the appropriate clinical context for transfusion.

View Article and Find Full Text PDF

Using light absorbing semiconductors to harvest solar energy has long been considered as a promising approach for driving chemical reactions. Photochemical oxidation of alcohols catalyzed by noble-metal free nanomaterials is particularly attractive due to the bio-derivable nature of the substrate and the wide availability of such catalysts. Here, a number of strategies that could facilitate the progress are discussed, where it is concluded that the photochemical alcohol oxidation process can benefit from both mechanistic optimization of the electron-transfer steps and structural engineering of the light-absorbing nanomaterials.

View Article and Find Full Text PDF