Publications by authors named "B A Bannatyne"

Elaborate behaviours are produced by tightly controlled flexor-extensor motor neuron activation patterns. Motor neurons are regulated by a network of interneurons within the spinal cord, but the computational processes involved in motor control are not fully understood. The neuroanatomical arrangement of motor and premotor neurons into topographic patterns related to their controlled muscles is thought to facilitate how information is processed by spinal circuits.

View Article and Find Full Text PDF

The spinal cord can appropriately generate diverse movements, even without brain input and movement-related sensory feedback, using a combination of multifunctional and behaviorally specialized interneurons. The adult turtle spinal cord can generate motor patterns underlying forward swimming, three forms of scratching, and limb withdrawal (flexion reflex). We previously described turtle spinal interneurons activated during both scratching and swimming (multifunctional interneurons), interneurons activated during scratching but not swimming (scratch-specialized interneurons), and interneurons activated during flexion reflex but not scratching or swimming (flexion reflex-selective interneurons).

View Article and Find Full Text PDF

Although Renshaw cells (RCs) were discovered over half a century ago, their precise role in recurrent inhibition and ability to modulate motoneuron excitability have yet to be established. Indirect measurements of recurrent inhibition have suggested only a weak modulatory effect but are limited by the lack of observed motoneuron responses to inputs from single RCs. Here we present dual recordings between connected RC-motoneuron pairs, performed on mouse spinal cord.

View Article and Find Full Text PDF

Precise mechanisms are required to coordinate the locomotor activity of fore- and hind-limbs in quadrupeds and similar mechanisms persist to coordinate movement of arms and legs in humans. Propriospinal neurons (PSNs) are major components of the networks that coordinate these mechanisms. The b subunit of cholera toxin (CTb) was injected unilaterally into either L1 or L3 segments in order to label ascending and descending propriospinal pathways.

View Article and Find Full Text PDF

Descending systems from the brain exert a major influence over sensory and motor processes within the spinal cord. Although it is known that many descending systems have an excitatory effect on spinal neurons, there are still gaps in our knowledge regarding the transmitter phenotypes used by them. In this study we investigated transmitter phenotypes of axons in the corticospinal tract (CST); the rubrospinal tract (RST); the lateral component of the vestibulospinal tract (VST); and the reticulospinal tract (ReST).

View Article and Find Full Text PDF