Publications by authors named "Azzoni R"

Glaciers host a variety of cold-adapted taxa, many of which have not yet been described. Interactions among glacier organisms are even less clear. Understanding ecological interactions is crucial to unravelling the functioning of glacier ecosystems, particularly in light of current glacier retreat.

View Article and Find Full Text PDF

Intestinal helminth infection triggers a type 2 immune response that promotes a 'weep-and sweep' response characterised by increased mucus secretion and intestinal hypermotility, which function to dislodge the worm from its intestinal habitat. Recent studies have discovered that several other pathogens cause intestinal dysmotility through major alterations to the immune and enteric nervous systems (ENS), and their interactions, within the gastrointestinal tract. However, the involvement of these systems has not been investigated for helminth infections.

View Article and Find Full Text PDF

The global retreat of glaciers is dramatically altering mountain and high-latitude landscapes, with new ecosystems developing from apparently barren substrates. The study of these emerging ecosystems is critical to understanding how climate change interacts with microhabitat and biotic communities and determines the future of ice-free terrains. Here, using a comprehensive characterization of ecosystems (soil properties, microclimate, productivity and biodiversity by environmental DNA metabarcoding) across 46 proglacial landscapes worldwide, we found that all the environmental properties change with time since glaciers retreated, and that temperature modulates the accumulation of soil nutrients.

View Article and Find Full Text PDF

The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types.

View Article and Find Full Text PDF

The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking.

View Article and Find Full Text PDF

The mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition 'versus' replacement. We assessed the role of these processes in the variation (β-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys.

View Article and Find Full Text PDF

The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens.

View Article and Find Full Text PDF

Barrier tissues are highly innervated by sensory and autonomic nerves that are positioned in close proximity to both stromal and immune cell populations. Together with a growing awareness of the far-reaching consequences of neuroimmune interactions, recent studies have uncovered key mechanisms through which they contribute to organ homeostasis and immunity. It has also become clear that dysregulation of such interactions is implicated in the development of chronic lung diseases.

View Article and Find Full Text PDF

Landscapes nearby glaciers are disproportionally affected by climate change, but we lack detailed information on microclimate variations that can modulate the impacts of global warming on proglacial ecosystems and their biodiversity. Here, we use near-subsurface soil temperatures in 175 stations from polar, equatorial and alpine glacier forelands to generate high-resolution temperature reconstructions, assess spatial variability in microclimate change from 2001 to 2020, and estimate whether microclimate heterogeneity might buffer the severity of warming trends. Temporal changes in microclimate are tightly linked to broad-scale conditions, but the rate of local warming shows great spatial heterogeneity, with faster warming nearby glaciers and during the warm season, and an extension of the snow-free season.

View Article and Find Full Text PDF

Cryoconite holes are small ponds present on the surface of most glaciers filled with meltwater and sediment at the bottom. Although they are characterized by extreme conditions, they host bacterial communities with high taxonomic and functional biodiversity. Despite that evidence for a potential niche for anaerobic microorganisms and anaerobic processes has recently emerged, the composition of the microbial communities of the cryoconite reported so far has not shown the relevant presence of anaerobic taxa.

View Article and Find Full Text PDF

Cryoconite holes, ponds full of melting water with sediment on the bottom, are hotspots of biodiversity on glacier surfaces and host dynamic micro-ecosystems. They have been extensively investigated in different areas of the world (e.g.

View Article and Find Full Text PDF

Microplastic (MP) contamination is ubiquitous and widespread in terrestrial and aquatic ecosystems, including remote areas. However, information on the presence and distribution of MPs in high-mountain ecosystems, including glaciers, is still limited. The present study aimed at investigating presence, spatial distribution, and patterns of contamination of MPs on three glaciers of the Ortles-Cevedale massif (Central Alps, Northern Italy) with different anthropic pressures, i.

View Article and Find Full Text PDF

The gut microbiome is well-known to shape local and distal immune responses, both in health and disease. In a recent issue of Nature, Hosang et al. demonstrate how the lung microbiome regulates the magnitude of autoimmune inflammation in the brain.

View Article and Find Full Text PDF

Cryoconite is a mixture of mineral and organic material covering glacial ice, playing important roles in biogeochemical cycles and lowering the albedo of a glacier surface. Understanding the differences in structure of cryoconite across the globe can be important in recognizing past and future changes in supraglacial environments and ice-organisms-minerals interactions. Despite the worldwide distribution and over a century of studies, the basic characteristics of cryoconite, including its forms and geochemistry, remain poorly studied.

View Article and Find Full Text PDF

Since the last glacial maximum, soil formation related to ice-cover shrinkage has been one major sink of carbon accumulating as soil organic matter (SOM), a phenomenon accelerated by the ongoing global warming. In recently deglacierized forelands, processes of SOM accumulation, including those that control carbon and nitrogen sequestration rates and biogeochemical stability of newly sequestered carbon, remain poorly understood. Here, we investigate the build-up of SOM during the initial stages (up to 410 years) of topsoil development in 10 glacier forelands distributed on four continents.

View Article and Find Full Text PDF

In this study, the early ecological succession patterns of Forni Glacier (Ortles-Cevedale group, Italian Alps) forefield along an 18-year long chronosequence (with a temporal resolution of 1 year) has been reported. Bacterial and fungal community structures were inferred by high-throughput sequencing of 16S rRNA gene and ITS, respectively. In addition, the occurrence of both herbaceous and arboreous plants was also recorded at each plot.

View Article and Find Full Text PDF

Contamination by plastic debris has been documented in most regions of the world, but their occurrence in high mountain areas has not been investigated to date. Here we present the first report of the occurrence and amount of microplastic in any terrestrial glacier environment. In the supraglacial debris of the Forni Glacier (Italian Alps), we observed the occurrence of (mean ± standard error) 74.

View Article and Find Full Text PDF

Organic contaminants deposited on glacier snow and ice are subject to partitioning and degradation processes that determine their environmental fate and, consequently, their accumulation in ice bodies. Among these processes, organic compound degradation by supraglacial bacteria has been investigated to a lesser extent than photo- and chemical degradation. We investigated biodegradation of the organophosphorus insecticide chlorpyrifos (CPF), a xenobiotic tracer that accumulates on glaciers after atmospheric medium- and long-range transport, by installing in situ microcosms on an Alpine glacier to simulate cryoconite hole systems.

View Article and Find Full Text PDF

We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas.

View Article and Find Full Text PDF

Cryoconite holes are small ponds that form on the surface of glaciers that contain a dark debris, the cryoconite, at the bottom and host active ecological communities. Differences in the structure of bacterial communities have been documented among Arctic and mountain glaciers, and among glaciers in different areas of the world. In this study, we investigated the structure of bacterial communities of cryoconite holes of Baltoro Glacier, a large (62 km in length and 524 km of surface) glacier of the Karakoram, by high-throughput sequencing of the V5-V6 hypervariable regions of the 16S rRNA gene.

View Article and Find Full Text PDF

Cryoconite holes, that is, small ponds that form on glacier surface, are considered the most biologically active environments on glaciers. Bacterial communities in these environments have been extensively studied, but often through snapshot studies based on the assumption of a general stability of community structure. In this study, the temporal variation of bacterial communities in cryoconite holes on the Forni Glacier (Italian Alps) was investigated by high throughput DNA sequencing.

View Article and Find Full Text PDF

Biological processes on glacier surfaces affect glacier reflectance, influence surface energy budget and glacier response to climate warming, and determine glacier carbon exchange with the atmosphere. Currently, carbon balance of supraglacial environment is assessed as the balance between the activity of oxygenic phototrophs and the respiration rate of heterotrophic organisms. Here we present a metagenomic analysis of tiny wind-blown supraglacial sediment (cryoconite) from Baltoro (Pakistani Karakoram) and Forni (Italian Alps) glaciers, providing evidence for the occurrence in these environments of different and previously neglected metabolic pathways.

View Article and Find Full Text PDF

Aim: The aim of this paper was to compare the results of treatment of developmental dysplasia of the hip (DDH) with two different devices.

Methods: In 118 DDH, authors employed, in a blinded randomized study, Teuffel-Mignon (TF) and Coxa-Flex (CF) devices. In this study checked 51 hips type IIC; 43 type IID; 15 type IIIA; 9 type IIIB, by Graf classification.

View Article and Find Full Text PDF

Dysplasia epiphysealis hemimelica is a rare developmental disorder with unknown etiology affecting epiphysis in childhood. The lesion is an osteochondroma arising from the epiphysis and increasing in size until skeletal maturity is reached. Surgical treatment is mandatory when symptoms such as pain, joint impingement or deformation are present, and yields good results when the mass is juxtaarticular or extraarticular.

View Article and Find Full Text PDF