Publications by authors named "Azza Idris"

The most advanced monoclonal antibodies (mAbs) and vaccines against malaria target the central repeat region or closely related sequences within the circumsporozoite protein (PfCSP). Here, using an antigen-agnostic strategy to investigate human antibody responses to whole sporozoites, we identified a class of mAbs that target a cryptic PfCSP epitope that is only exposed after cleavage and subsequent pyroglutamylation (pGlu) of the newly formed N terminus. This pGlu-CSP epitope is not targeted by current anti-PfCSP mAbs and is not included in the licensed malaria vaccines.

View Article and Find Full Text PDF

Despite various public health strategies, malaria caused by Plasmodium falciparum parasites remains a major global health challenge that requires development of new interventions. Extended half-life human monoclonal antibodies targeting the P. falciparum circumsporozoite protein on sporozoites, the infective form of malaria parasites, prevent malaria in rodents and humans and have been advanced into clinical development.

View Article and Find Full Text PDF

is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic , which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic strains.

View Article and Find Full Text PDF

Background: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from infection in a region where this organism is endemic is unclear.

Methods: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season.

View Article and Find Full Text PDF
Article Synopsis
  • * Using single-cell RNA sequencing, researchers explored the development of germinal center (GC) B cells after immunization and identified three distinct cell populations in the GC light zone (LZ).
  • * One LZ population showed early signs of differentiating into PCs but had affinity levels similar to those remaining in the GC, indicating that the process of starting PC development might not depend on antibody affinity.
View Article and Find Full Text PDF

Human monoclonal antibodies (hmAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on the sporozoite surface are a promising tool for preventing malaria infection. However, their mechanisms of protection remain unclear. Here, using 13 distinctive PfCSP hmAbs, we provide a comprehensive view of how PfCSP hmAbs neutralize sporozoites in host tissues.

View Article and Find Full Text PDF

Monoclonal antibody L9 recognizes the Plasmodium falciparum circumsporozoite protein (PfCSP) and is highly protective following controlled human malaria challenge. To gain insight into its function, we determined cryoelectron microscopy (cryo-EM) structures of L9 in complex with full-length PfCSP and assessed how this recognition influenced protection by wild-type and mutant L9s. Cryo-EM reconstructions at 3.

View Article and Find Full Text PDF

Background: Human monoclonal antibodies might offer an important new approach to reduce malaria morbidity and mortality. In the first two parts of a three-part clinical trial, the antimalarial monoclonal antibody CIS43LS conferred high protection against parasitaemia at doses of 20 mg/kg or 40 mg/kg administered intravenously followed by controlled human malaria infection. The ability of CIS43LS to confer protection at lower doses or by the subcutaneous route is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • CIS43LS is a monoclonal antibody that showed potential to protect against infection in a phase 1 clinical trial, but its effectiveness in endemic regions was unclear.
  • A phase 2 trial was conducted in Mali, involving 330 healthy adults, to evaluate the safety and efficacy of CIS43LS through different dosage levels against malaria over a 6-month period.
  • Results indicated that participants receiving 40 mg of CIS43LS per kilogram had an 88.2% efficacy rate against infection, while those receiving 10 mg had a 75.0% efficacy rate, showing the antibody's protective ability with relatively minor safety concerns.
View Article and Find Full Text PDF

Background: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed.

Methods: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight.

View Article and Find Full Text PDF

The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants.

View Article and Find Full Text PDF

L9 is a potent human monoclonal antibody (mAb) that preferentially binds two adjacent NVDP minor repeats and cross-reacts with NANP major repeats of the Plasmodium falciparum circumsporozoite protein (PfCSP) on malaria-infective sporozoites. Understanding this mAb's ontogeny and mechanisms of binding PfCSP will facilitate vaccine development. Here, we isolate mAbs clonally related to L9 and show that this B cell lineage has baseline NVDP affinity and evolves to acquire NANP reactivity.

View Article and Find Full Text PDF

Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites.

View Article and Find Full Text PDF

Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity.

View Article and Find Full Text PDF
Article Synopsis
  • Rare monoclonal antibodies (mAbs) that target specific parts of the Plasmodium falciparum circumsporozoite protein (PfCSP) show varying levels of effectiveness in binding and protecting against malaria sporozoites.
  • The study assessed three human mAbs (CIS43, L9, and 317) to see how well they protect against malaria when specific PfCSP segments are altered in the malaria-causing Plasmodium berghei.
  • Findings indicate that junction and minor repeats are crucial for protection from infection, while major repeats are also necessary for one antibody, suggesting different pathways for neutralizing malaria, which could guide future vaccine and mAb development.
View Article and Find Full Text PDF

Background: Additional interventions are needed to reduce the morbidity and mortality caused by malaria.

Methods: We conducted a two-part, phase 1 clinical trial to assess the safety and pharmacokinetics of CIS43LS, an antimalarial monoclonal antibody with an extended half-life, and its efficacy against infection with . Part A of the trial assessed the safety, initial side-effect profile, and pharmacokinetics of CIS43LS in healthy adults who had never had malaria.

View Article and Find Full Text PDF

Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as , is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection.

View Article and Find Full Text PDF

The most advanced malaria vaccine, RTS,S, includes the central repeat and C-terminal domains of the circumsporozoite protein (PfCSP). We have recently isolated human antibodies that target the junctional region between the N-terminal and repeat domains that are not included in RTS,S. Due to the fact that these antibodies protect against malaria challenge in mice, their epitopes could be effective vaccine targets.

View Article and Find Full Text PDF

The diversity of circulating human B cells is unknown. We use single-cell RNA sequencing (RNA-seq) to examine the diversity of both antigen-specific and total B cells in healthy subjects and malaria-exposed individuals. This reveals two B cell lineages: a classical lineage of activated and resting memory B cells and an alternative lineage, which includes previously described atypical B cells.

View Article and Find Full Text PDF

CIS43 is a potent neutralizing human mAb that targets a highly conserved "junctional" epitope in the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). Enhancing the durability of CIS43 in vivo will be important for clinical translation. Here, 2 approaches were used to improve the durability of CIS43 in vivo while maintaining potent neutralization.

View Article and Find Full Text PDF

Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice.

View Article and Find Full Text PDF

Generating sufficient antibody to block infection is a key challenge for vaccines against malaria. Here, we show that antibody titers to a key target, the repeat region of the Plasmodium falciparum circumsporozoite protein (PfCSP), plateaued after two immunizations in a clinical trial of the radiation-attenuated sporozoite vaccine. To understand the mechanisms limiting vaccine responsiveness, we developed immunoglobulin (Ig)-knockin mice with elevated numbers of PfCSP-binding B cells.

View Article and Find Full Text PDF

In the version of this article originally published, data were incorrectly ascribed to monoclonal antibody CIS34 because of a labeling error. The data were generated with monoclonal antibody CIS04. Full details can be found in the correction notice.

View Article and Find Full Text PDF

Development of a highly effective vaccine or antibodies for the prevention and ultimately elimination of malaria is urgently needed. Here we report the isolation of a number of human monoclonal antibodies directed against the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) from several subjects immunized with an attenuated Pf whole-sporozoite (SPZ) vaccine (Sanaria PfSPZ Vaccine). Passive transfer of one of these antibodies, monoclonal antibody CIS43, conferred high-level, sterile protection in two different mouse models of malaria infection.

View Article and Find Full Text PDF