TC21 alloy is a high-strength titanium alloy that has been gaining attention in various industries for its excellent combination of strength, toughness, and corrosion resistance. Given that this alloy is hard to cut material, therefore this study aims to optimize the process parameters of Turing this alloy under different conditions (i.e.
View Article and Find Full Text PDFThis article presents the results of an experimental investigation into the effect of process parameters in the precision hard turning of Ti-6Al-4V on chip morphology at both macro and micro levels. It also reports on the control of chip generation to improve chip evacuation and breakability at the macro level by varying the process parameters, namely, feed rate, cutting speed and depth of cut during turning tests. A scanning electron microscope (SEM) was used to examine the chips produced for a better understanding of chip curling mechanisms at the micro level.
View Article and Find Full Text PDFThis article presents the results of an experimental investigation into the machinability of Ti6Al4V alloy during hard turning, including both conventional and high-speed machining, using polycrystalline diamond (PCD) inserts. A central composite design of experiment procedure was followed to examine the effects of variable process parameters; feed rate, cutting speed and depth of cut (each at five levels) and their interaction effects on surface roughness and cutting temperature as process responses. The results revealed that cutting temperature increased with increasing cutting speed and decreasing feed rate in both conventional and high-speed machining.
View Article and Find Full Text PDF