Publications by authors named "Azusa Ota"

Article Synopsis
  • - The study examines how gene-lifestyle interactions influence body mass index (BMI) and emphasizes the need for personalized nutrition in obesity treatment strategies, as current evidence is limited.
  • - Using data from over 12,000 participants, researchers found a significant correlation (r = 0.13) between a multi-locus genetic risk score (GRS) and BMI, highlighting the impact of genetic factors on obesity.
  • - Results showed interactions between GRS and certain dietary intakes, such as saturated fatty acids and n-3 polyunsaturated fatty acids, suggesting that personalized dietary recommendations based on genetic predisposition could improve obesity prevention and treatment.
View Article and Find Full Text PDF

Mitochondria have their own DNA (mtDNA), which encodes essential respiratory subunits. Under live imaging, mitochondrial nucleoids, composed of several copies of mtDNA and DNA-binding proteins, such as mitochondrial transcription factor A (TFAM), actively move inside mitochondria and change the morphology, in concert with mitochondrial membrane fission. Here we found the mitochondrial inner membrane-anchored AAA-ATPase protein ATAD3A mediates the nucleoid dynamics.

View Article and Find Full Text PDF

Objectives: Differences in virulence genes, including psm-mec, which is a phenol-soluble modulin-mec (PSM-mec) encoding gene, of predominant staphylococcal cassette chromosome mec (SCCmec) types II and IV Methicillin-resistant Staphylococcus aureus (MRSA) may contribute to the virulence and clinical features of MRSA in Japan. We aimed to clarify the clinical characteristics and risk factors of infection among SCCmec types II and IV MRSA isolates from a Japanese secondary acute care hospital.

Methods: We analysed 58 SCCmec type II and 83 SCCmec type IV MRSA isolates collected from blood, central venous catheter tips, deep or superficial tissues, and sputum.

View Article and Find Full Text PDF

A 53-year-old male Japanese patient with COVID-19 was admitted to our hospital after his respiratory condition worsened on day 9 of the disease. With the diagnosis of severe COVID-19, treatment with remdesivir, dexamethasone, and unfractionated heparin was started for the prevention of thrombosis. Although the patient's respiratory status data improved after treatment, severe respiratory failure persisted.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles that frequently divide and fuse with each other. The dynamin-related GTPase protein Drp1 has a key role in mitochondrial fission. To analyse the physiological roles of Drp1 in cultured human cells, we analysed Drp1-deficient HeLa cells established by genome editing using CRISPR/Cas9.

View Article and Find Full Text PDF

The spectra of phenotypes associated with aging and mitochondrial diseases sometimes appear to overlap with each other. We used aged mice and a mouse model of mitochondrial diseases (transmitochondrial mito-miceΔ with deleted mtDNA) to study whether premature aging phenotypes observed in mtDNA mutator mice are associated with aging or mitochondrial diseases. Here, we provide convincing evidence that all the mice examined had musculoskeletal disorders of osteoporosis and muscle atrophy, which correspond to phenotypes prevalently observed in the elderly.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ.

View Article and Find Full Text PDF

Although augmented prostaglandin E(2) (PGE(2)) synthesis and accumulation have been demonstrated in the lesion sites of rodent transient focal ischemia models, the role of PGE(2) in neuronal survival has been controversial, showing both protective and toxic effects. Here we demonstrate the induction of microsomal PGE synthase 1 (mPGES-1), an inducible terminal enzyme for PGE(2) synthesis, in neurons, microglia, and endothelial cells in the cerebral cortex after transient focal ischemia. In mPGES-1 knockout (KO) mice, in which the postischemic PGE(2) production in the cortex was completely absent, the infarction, edema, apoptotic cell death, and caspase-3 activation in the cortex after ischemia were all reduced compared with those in wild-type (WT) mice.

View Article and Find Full Text PDF