Publications by authors named "Azusa Kinjo"

Plastics can contain two types of organic contaminants; absorbed from ambient water, and already contained as additives. To investigate the bioaccumulation of these substances, we conducted two types of exposure experiments using mussels and polyethylene microplastics with absorbed PCBs and containing four types of additives (BDE209, DBDPE, UV327 and UV234). After dietary exposure for 15 days, significantly higher concentrations of total PCBs, UV327 and UV234 were detected in the gonad of exposed groups than in the control groups, respectively.

View Article and Find Full Text PDF

Utilization and regulation of metals from seawater by marine organisms are important physiological processes. To better understand metal regulation, we searched the crown-of-thorns starfish genome for the divalent metal transporter (DMT) gene, a membrane protein responsible for uptake of divalent cations. We found two DMT-like sequences.

View Article and Find Full Text PDF

Mussels, which occupy important positions in marine ecosystems, attach tightly to underwater substrates using a proteinaceous holdfast known as the byssus, which is tough, durable, and resistant to enzymatic degradation. Although various byssal proteins have been identified, the mechanisms by which it achieves such durability are unknown. Here we report comprehensive identification of genes involved in byssus formation through whole-genome and foot-specific transcriptomic analyses of the green mussel, Perna viridis.

View Article and Find Full Text PDF

Filter feeding organisms have been reported to ingest microplastics (MP) in marine environments. However, information regarding how long the ingested MPs are retained in their digestive tracts remains limited. Here, we report the gut retention time (GRT) and the long-term egestion time of three different sized polystyrene microspheres (1, 10, and 90 μm) in the Mediterranean mussel Mytilus galloprovincialis.

View Article and Find Full Text PDF

Mammalian γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) is a specific transporter for GABA, an inhibitory neurotransmitter in GABA-ergic neurons. GAT-1 belongs to the GAT group, in which five related transporters, GAT-2, GAT-3, GAT-4, CT1, and TAUT are known in mammals. By contrast, the deep-sea mussel, Bathymodiolus septemdierum has only two GAT group members, BsGAT-1 and BsTAUT, and their function in environmental adaptation is of interest to better understand the physiology of deep-sea organisms.

View Article and Find Full Text PDF

Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments.

View Article and Find Full Text PDF

The GABA transporter (GAT) group is one of the major subgroups in the solute career 6 (SLC6) family of transmembrane proteins. The GAT group, which has been well studied in mammals, has 6 known members, i.e.

View Article and Find Full Text PDF