Nuclear pore complexes (NPCs) on the nuclear membrane surface have a crucial function in controlling the movement of small molecules and macromolecules between the cell nucleus and cytoplasm through their intricate core channel resembling a spiderweb with several layers. Currently, there are few methods available to accurately measure the dynamics of nuclear pores on the nuclear membranes at the nanoscale. The limitation of traditional optical imaging is due to diffraction, which prevents achieving the required resolution for observing a diverse array of organelles and proteins within cells.
View Article and Find Full Text PDFMagnetotactic bacteria (MTB) generate a membrane-enclosed subcellular compartment called magnetosome, which contains a biomineralized magnetite or greigite crystal, an inner membrane-derived lipid bilayer membrane, and a set of specifically targeted associated proteins. Magnetosomes are formed by a group of magnetosome-associated proteins encoded in a genomic region called magnetosome island. Magnetosomes are then arranged in a linear chain-like positioning, and the resulting magnetic dipole of the chain functions as a geomagnetic sensor for magneto-aerotaxis motility.
View Article and Find Full Text PDFMethods Mol Biol
February 2023
The assessment of intracellular dynamics is crucial for understanding the function and formation process of bacterial organelle, just as it is for the inquisition of their eukaryotic counterparts. The methods for imaging magnetosome organelles in a magnetotactic bacterial cell using live-cell fluorescence imaging by highly inclined and laminated optical sheet (HILO) microscopy are presented in this chapter. Furthermore, we introduce methods for pH imaging in magnetosome lumen as an application of fluorescence magnetosome imaging.
View Article and Find Full Text PDFMagnetotactic bacteria (MTB) ubiquitously inhabit the oxic-anoxic interface or anaerobic areas of aquatic environments. MTB biomineralize magnetite or greigite crystals and synthesize an organelle known as magnetosome. This intrinsic ability of MTB allows them to accumulate iron to levels 100-1000 times higher than those in non-magnetotactic bacteria (non-MTB).
View Article and Find Full Text PDFBacteria communicate through signaling molecules that coordinate group behavior. Hydrophobic signals that do not diffuse in aqueous environments are used as signaling molecules by several bacteria. However, limited information is currently available on the mechanisms by which these molecules are transported between cells.
View Article and Find Full Text PDFBacterial cells release nanometer-sized extracellular membrane vesicles (MVs) to deliver cargo molecules for use in mediating various biological processes. However, the detailed processes of transporting these cargos from MVs to recipient cells remain unclear because of the lack of imaging techniques to image nanometer-sized fragile vesicles in a living bacterial cell surface. Herein, we quantitatively demonstrated that the direct binding of MV to the cell surface significantly promotes hydrophobic quorum-sensing signal (C16-HSL) transportation to the recipient cells.
View Article and Find Full Text PDFMagnetotactic bacteria are a diverse group of microorganisms that use intracellular chains of ferrimagnetic nanocrystals, produced within magnetosome organelles, to align and navigate along the geomagnetic field. Several conserved genes for magnetosome formation have been described, but the mechanisms leading to distinct species-specific magnetosome chain configurations remain unclear. Here, we show that the fragmented nature of magnetosome chains in Magnetospirillum magneticum AMB-1 is controlled by genes mcaA and mcaB.
View Article and Find Full Text PDFGlass nanopipettes are widely used for various applications in nanosciences. In most of the applications, it is important to characterize their geometrical parameters, such as the aperture size and the inner cone angle at the tip region. For nanopipettes with sub-10 nm aperture and thin wall thickness, transmission electron microscopy (TEM) must be most instrumental in their precise geometrical measurement.
View Article and Find Full Text PDFBacteria release nanometer-scale extracellular membrane vesicles (MVs) to mediate a variety of biological processes. We analyzed individual MVs under physiological conditions by phase imaging of high-speed atomic force microscopy to assess the physiological heterogeneity of MVs isolated from bacterial cultures. Phase imaging makes it possible to map the physical properties of an individual, fragile MV in an isolated MV population containing a broad variety of vesicle diameters, from 20 to 150 nm.
View Article and Find Full Text PDFMotility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms.
View Article and Find Full Text PDFMagnetotactic bacteria synthesize uniform-sized and regularly shaped magnetic nanoparticles in their organelles termed magnetosomes. Homeostasis of the magnetosome lumen must be maintained for its role accomplishment. Here, we developed a method to estimate the pH of a single living cell of the magnetotactic bacterium Magnetospirillum magneticum AMB-1 using a pH-sensitive fluorescent protein EGFP.
View Article and Find Full Text PDFMagnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be in positioning magnetosome organelles; this was proposed based on observations via electron microscopy still images.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) are the sole turnstile implanted in the nuclear envelope (NE), acting as a central nanoregulator of transport between the cytosol and the nucleus. NPCs consist of ∼30 proteins, termed nucleoporins. About one-third of nucleoporins harbor natively unstructured, intrinsically disordered phenylalanine-glycine strings (FG-Nups), which engage in transport selectivity.
View Article and Find Full Text PDFMagnetosomes are membrane-enveloped bacterial organelles containing nano-sized magnetic particles, and function as a cellular magnetic sensor, which assist the cells to navigate and swim along the geomagnetic field. Localized with each magnetosome is a suite of proteins involved in the synthesis, maintenance and functionalization of the organelle, however the detailed molecular organization of the proteins in magnetosomes is unresolved. MamA is one of the most abundant magnetosome-associated proteins and is anchored to the magnetosome vesicles through protein-protein interactions, but the identity of the protein that interacts with MamA is undetermined.
View Article and Find Full Text PDFBacteria have been studied using different microscopy methods for many years. Recently, the developments of high-speed atomic force microscopy have opened the doors to study bacteria in new ways due to the fact that it uses much less force on the sample while imaging. This makes the high-speed atomic force microscope an indispensable technique for imaging the surface of living bacterial cells because it allows for the high-resolution visualization of surface proteins in their natural condition without disrupting the cell or the activity of the proteins.
View Article and Find Full Text PDFMagnetotactic bacteria use a specific set of conserved proteins to biomineralize crystals of magnetite or greigite within their cells in organelles called magnetosomes. Using Magnetospirillum magneticum AMB-1, we examined one of the magnetotactic bacteria-specific conserved proteins named MamP that was recently reported as a new type of cytochrome c that has iron oxidase activity. We found that MamP is a membrane-bound cytochrome, and the MamP content increases during the exponential growth phase compared to two other magnetosome-associated proteins on the same operon, MamA and MamK.
View Article and Find Full Text PDFCrocodylus siamensis hemoglobin was purified by a size exclusion chromatography, Sephacryl S-100 with buffer containing dithiothreitol. The purified Hb was dissociated to be two forms (α chain and β chain) which observed by SDS-PAGE, indicated that the C. siamensis Hb was an unpolymerized form.
View Article and Find Full Text PDFThe Papilio xuthus (Lepidoptera: Papilionidae) pupa expresses novel soluble proteins that undergo reversible temperature-dependent coacervate-formation. We purified two coacervate-forming proteins, PX-1 and PX-4, from the wings of pharate adults. PX-1 and PX-4 form coacervates upon warming.
View Article and Find Full Text PDFProkaryotic organelles called magnetosomes allow magnetotactic bacteria to navigate along geomagnetic field lines. In this study, we modified a swimming assay commonly used to assess bacterial motility to develop a new method of assessing magnetotactic motility. By this method, the swimming assay was performed in an artificial magnetic field.
View Article and Find Full Text PDFAdvances in microscopy have contributed to many biologic discoveries. Electron microscopic techniques such as cryo-electron tomography are remarkable tools for imaging the interiors of bacterial cells in the near-native state, whereas optical microscopic techniques such as fluorescence imaging are useful for following the dynamics of specific single molecules in living cells. Neither technique, however, can be used to visualize the structural dynamics of a single molecule at high resolution in living cells.
View Article and Find Full Text PDFThe unique ability of magnetotactic bacteria to navigate along a geomagnetic field is accomplished with the help of prokaryotic organelles, magnetosomes. The magnetosomes have well-ordered chain-like structures, comprising membrane-enveloped, nano-sized magnetic crystals, and various types of specifically associated proteins. In this study, we applied atomic force microscopy (AFM) to investigate the spatial configuration of isolated magnetosomes from Magnetospirillum magneticum AMB-1 in near-native buffer conditions.
View Article and Find Full Text PDFTanpakushitsu Kakusan Koso
October 2008
The magnetotactic bacterium Magnetospirillum magnetotacticum MS-1 mineralizes the magnetite (Fe(3)O(4)) crystal and organizes a highly ordered intracellular structure, called the magnetosome. However, the iron transport system, which supports the biogenesis of magnetite, is not fully understood. In this study, we first identified the expressions of both the ferric and the ferrous iron transporter proteins in M.
View Article and Find Full Text PDF