Wireless sensor networks (WSNs) have received considerable interest in recent years. These sensor nodes can gather information from the surrounding environment and transmit it to a designated location. Each sensor node in WSN typically has a battery with a limited capacity.
View Article and Find Full Text PDFCollateral vessels play an important role in the restoration of blood flow to the ischemic tissues of stroke patients, and the quality of collateral flow has major impact on reducing treatment delay and increasing the success rate of reperfusion. Due to high spatial resolution and rapid scan time, advance imaging using the cone-beam computed tomography (CBCT) is gaining more attention over the conventional angiography in acute stroke diagnosis. Detecting collateral vessels from CBCT images is a challenging task due to the presence of noises and artifacts, small-size and non-uniform structure of vessels.
View Article and Find Full Text PDFA reliability assessment is an important tool used for processing plants, since the facility consists of many loops and instruments attached and operated based on other availability; thus, a statistical model is needed to visualize the reliability of its operation. The paper focuses on the reliability assessment and prediction based on the existing statistical models, such as normal, log-normal, exponential, and Weibull distribution. This paper evaluates and visualizes the statistical reliability models optimized using MLE and considers the failure mode caused during a simulated process control operation.
View Article and Find Full Text PDFSensors (Basel)
February 2020
A wireless sensor network (WSN) deploys hundreds or thousands of nodes that may introduce large-scale data over time. Dealing with such an amount of collected data is a real challenge for energy-constraint sensor nodes. Therefore, numerous research works have been carried out to design efficient data clustering techniques in WSNs to eliminate the amount of redundant data before transmitting them to the sink while preserving their fundamental properties.
View Article and Find Full Text PDFIn this work, a sunlight-sensitive photocatalyst of nanocubic-like titanium dioxide (TiO) and N-doped graphene quantum dots (N-GQDs) is developed through a simple hydrothermal and physical mixing method. The successful amalgamation composite photocatalyst characteristics were comprehensively scrutinized through various physical and chemical analyses. A complete removal of bisphenol A (BPA) is attained by a synthesized composite after 30 min of sunlight irradiation as compared to pure TiO.
View Article and Find Full Text PDFBeilstein J Nanotechnol
February 2018
The utilisation of sunlight as an abundant and renewable resource has motivated the development of sustainable photocatalysts that can collectively harvest visible light. However, the bottleneck in utilising the low energy photons has led to the discovery of plasmonic photocatalysts. The presence of noble metal on the plasmonic photocatalyst enables the harvesting of visible light through the unique characteristic features of the noble metal nanomaterials.
View Article and Find Full Text PDFAn enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19).
View Article and Find Full Text PDF