The population has increased in recent decades, and as a result, the increase in urban wastewater has led to many environmental problems. In this study, the environmental impacts of the Southern Tehran treatment plant were assessed via life cycle assessment (LCA) (SimaPro 9.4.
View Article and Find Full Text PDFNatural disasters, depending on their severity, can generate vast amounts of waste. Without proper waste management, these disasters can result in environmental pollution, epidemics of infectious diseases, and reduced resilience and recovery. Although natural disasters are beyond human control, the extent of their impact is often influenced by the effectiveness of governmental and administrative responses.
View Article and Find Full Text PDFA heterogeneous catalyst was prepared by anchoring spinel cobalt ferrite nanoparticles on porous activated carbon (SCF@AC). The catalyst was tested to activate hydrogen peroxide (HP) in the Fenton degradation of metronidazole (MTZ). SCF nanoparticles were produced through the co-precipitation of iron and cobalt metal salts in an alkaline condition.
View Article and Find Full Text PDFIn this study, TiO nanoparticles were employed as a photocatalyst for the degradation of tetracycline (TC) under visible light irradiation. The TiO nanoparticles were decorated on natural pyrite (TiO/NP) and characterized using XRD, FTIR, and SEM-EDX methods. This study evaluated the impacts of various operational parameters such as pH, catalyst dosage, initial TC concentration, and light intensity on TC removal.
View Article and Find Full Text PDFDeveloping heterogeneous catalysts with high performance for peroxymonosulfate (PMS) activation to decontaminate organic pollutants from wastewater is of prominent importance. In this study, spinel cobalt ferrite (CoFeO) materials were coated on the surface of powdered activated carbon (CoFeO@PAC) via the facile co-precipitation method. The high specific surface area of PAC was beneficial for the adsorption of both bisphenol A (BP-A) and PMS molecules.
View Article and Find Full Text PDFWastewater treatment using bioelectrochemical systems (BESs) can be considered as a technology finding application in versatile areas such as for renewable energy production and simultaneous reducing environmental problems, biosensors, and bioelectrosynthesis. This review paper reports and critically discusses the challenges, and advances in bio-electrochemical studies in the 21st century. To sum and critically analyze the strides of the last 20+ years on the topic, this study first provides a comprehensive analysis on the structure, performance, and application of BESs, which include Microbial Fuel Cells (MFCs), Microbial Electrolysis Cells (MECs) and Microbial Desalination Cells (MDCs).
View Article and Find Full Text PDFIn this study, the ZnO/FeO catalyst was used as an active catalyst for the oxidation of Paraquat (PQ) herbicide in aqueous solution under ultrasonic (US) waves. FTIR, XRD, FE-SEM, and VSM analyses were performed to characterize the synthesized catalyst. Studies on the effect of radical scavengers were also carried out and the amount of organic matter degradation was determined by measuring the TOC.
View Article and Find Full Text PDFIn this study, the photocatalytic activity of ZnO was effectively improved via its combination with spinel cobalt ferrite (SCF) nanoparticles. The catalytic performance of ZnO@SCF (ZSCF) was investigated in coupling with UV irradiation and ultrasound (US), as a heterogeneous sono-photocatalytic process, for the decontamination of phenanthrene (PHE) from contaminated soil. Soil washing tests were conducted in a batch environment, after extraction assisted by using Tween 80.
View Article and Find Full Text PDFPhenanthrene as the hazardous PAHs-component are extensively detected in industrial wastewater. However, the impacts of bioelectrostimulation process on Phenanthrene degradation in aerobic reactors remained unclear. Here, a novel bioelectrostimulation process equipped with carbon cloth as electrodes was developed to investigate the removal efficiency of Phenanthrene and ATPase enzyme activity in the synthetic wastewater.
View Article and Find Full Text PDF