Publications by authors named "Azra Din"

Background: Intraoperative molecular imaging (IMI) uses a cancer-targeted fluorescent agent injected into patients to localize tumor nodules. Pafolacianine is a folate receptor (FR)-targeted near-infrared fluorescent probe. Almost 10% of patients have false negative fluorescence findings intraoperatively.

View Article and Find Full Text PDF

Background: Advances in intraoperative molecular imaging (IMI) may improve surgical outcomes when resecting tumors in the lung. A single-center trial was conducted using VGT-309, a cathepsin-targeted near-infrared imaging agent that causes lung nodules to fluoresce during surgical resection. The end point of this phase 2 study was to evaluate the frequency that IMI with VGT-309 resulted in a clinically significant event (CSE): localization of pulmonary nodules, discovery of unsuspected additional cancers, or identification of positive margins.

View Article and Find Full Text PDF

Objectives: Intraoperative molecular imaging (IMI) uses cancer-targeted fluorescent probe to locate nodules. Pafolacianine is a Food and Drug Administration-approved fluorescent probe for lung cancer. However, it has a 8-12% false negative rate for localization.

View Article and Find Full Text PDF

Purpose: Pafolacianine, a folate receptor alpha-targeted NIR tracer, has demonstrated clear efficacy in intraoperative molecular imaging-guided (IMI) lung cancer surgery. However, the selection of patients who would benefit from IMI remains challenging given the variability of fluorescence with patient-associated and histopathologic factors. Our goal in this study was to prospectively evaluate whether preoperative FRα/FRβ staining can predict pafolacianine-based fluorescence during real-time lung cancer resections.

View Article and Find Full Text PDF

Objective: Intraoperative molecular imaging (IMI) using tumor-targeted optical contrast agents can improve thoracic cancer resections. There are no large-scale studies to guide surgeons in patient selection or imaging agent choice. Here, we report our institutional experience with IMI for lung and pleural tumor resection in 500 patients over a decade.

View Article and Find Full Text PDF

Importance: Localization of subcentimeter ground glass opacities during minimally invasive thoracoscopic lung cancer resections is a significant challenge in thoracic oncology. Intraoperative molecular imaging has emerged as a potential solution, but the availability of suitable fluorescence agents is a limiting factor.

Objective: To evaluate the suitability of SGM-101, a carcinoembryonic antigen-related cell adhesion molecule type 5 (CEACAM5) receptor-targeted near-infrared fluorochrome, for molecular imaging-guided lung cancer resections, because glycoprotein is expressed in more than 80% of adenocarcinomas.

View Article and Find Full Text PDF

Background: Identifying ground glass opacities (GGOs) is challenging during robot-assisted thoracic surgery (RATS). Intraoperative molecular imaging (IMI) using tumor-targeted fluorescent tracers may address this clinical problem, but has never been evaluated in RATS. In a pilot study, we sought to determine whether IMI during RATS (RIMI) can localize GGOs.

View Article and Find Full Text PDF

Background: Intraoperative molecular imaging (IMI) with folate-targeted NIR tracers has been shown to improve lesion localization in more than 80% of lung adenocarcinomas. However, mucinous adenocarcinomas (MAs) and invasive mucinous adenocarcinomas (IMAs) of the lung, which are variants of adenocarcinoma, appear to have decreased fluorescence despite appropriate folate receptor expression on the tumor surface. We hypothesized that the etiology may be related to light excitation and emission through non-Newtonian fluid (mucin) produced by goblet and columnar cancer cells.

View Article and Find Full Text PDF

Background: Intraoperative molecular imaging (IMI) using tumor-targeted optical contrast agents can improve cancer resections. The optimal wavelength of the IMI tracer fluorophore has never been studied in humans and has major implications for the field. To address this question, we investigated 2 spectroscopically distinct fluorophores conjugated to the same targeting ligand.

View Article and Find Full Text PDF

Pulmonary squamous cell carcinoma is the second most common lung cancer subtype and has a low 5-year survival rate at 17.6%. Complete resection with negative margins can be curative, but a high number of patients suffer early postoperative recurrence due to inadequate disease clearance at the index operation.

View Article and Find Full Text PDF

Background: Pulmonary ground glass opacities (GGOs) are early-stage adenocarcinoma spectrum lesions that are not easily palpable. Challenges in localizing GGOs during intraoperative pathology can lead to imprecise diagnoses and additional time under anesthesia. To improve localization of GGOs during frozen section diagnosis, we evaluated a novel technique, 3-dimensional near-infrared specimen mapping (3D-NSM).

View Article and Find Full Text PDF

Importance: Complete (R0) resection is the dominant prognostic factor for survival across solid tumor types. Achieving adequate tumor clearance with appropriate margins is particularly difficult in nonpalpable tumors or in situ disease. Previous methods to address this problem have proven time consumptive, impractical, or ineffective.

View Article and Find Full Text PDF