Modulated continuous wave (CW) lasers cause photothermal effect that leads to rapid optical absorption and generation of thermal waves around the irradiated nanostructures. In this work, we examined the effect of modulated CW laser irradiation on the particle fragmentation process to enhance the thermal diffusivity of nanofluids. A facile and cost-effective diode laser was applied to reduce the agglomerated size of AlO nanoparticles in deionized water.
View Article and Find Full Text PDFSynthesis of nanocrystalline strontium ferrite (SrFeO) via sol-gel is sensitive to its modification parameters. Therefore, in this study, an attempt of regulating the pH as a sol-gel modification parameter during preparation of SrFeO nanoparticles sintered at a low sintering temperature of 900 °C has been presented. The relationship of varying pH (pH 0 to 8) on structural, microstructures, and magnetic behaviors of SrFeO nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning microscope (FESEM), and vibrating sample magnetometer (VSM).
View Article and Find Full Text PDFThe application of optical-fiber thermal wave cavity (OF-TWC) technique was investigated to measure the thermal diffusivity of Ag nanofluids. The thermal diffusivity was obtained by measuring the thermal wavelength of sample in a cavity scan mode. The spherical Ag nanoparticles samples were prepared at various sizes using the microwave method.
View Article and Find Full Text PDFIn this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2015
It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process.
View Article and Find Full Text PDFBackground: In this paper a template-free precipitation method was used as an easy and low cost way to synthesize Ag2S semiconductor nanoparticles. The Kramers-Kronig method (K-K) and classical dispersion theory was applied to calculate the optical constants of the prepared samples, such as the reflective index n(ω) and dielectric constant ε(ω) in Far-infrared regime.
Results: Nanocrystalline Ag2S was synthesized by a wet chemical precipitation method.
A template-free precipitation method was used as a simple and low cost method for preparation of CeO2 nanoparticles. The structure and morphology of the prepared nanoparticle samples were studied in detail using X-ray diffraction, Raman spectroscopy and Scanning Electron Microscopy (SEM) measurements. The whole powder pattern modelling (WPPM) method was applied on XRD data to accurately measure the crystalline domain size and their size distribution.
View Article and Find Full Text PDFAn antibacterial and conductive bionanocomposite (BNC) film consisting of polypyrrole (Ppy), zinc oxide (ZnO) nanoparticles (NPs), and chitosan (CS) was electrochemically synthesized on indium tin oxide (ITO) glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite.
View Article and Find Full Text PDFThe artificial neural network (ANN) modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output.
View Article and Find Full Text PDFSilver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy.
View Article and Find Full Text PDFIn ZnO-based low voltage varistor, the two essential features of microstructure determining its nonlinear response are the formation Bi-enriched active grain boundaries as well as a controlled ZnO grain size by secondary spinel-type phases. Besides, the microstructure and phase composition are strongly affected by the dopant concentration during sintering process. In this study, the optimal dopant levels of Bi2O3, TiO2, and Sb2O3 to achieve maximized nonlinear electrical property (alpha) were quantified by the response surface methodology (RSM).
View Article and Find Full Text PDFA nanocrystalline SnO2 thin film was synthesized by a chemical bath method. The parameters affecting the energy band gap and surface morphology of the deposited SnO2 thin film were optimized using a semi-empirical method. Four parameters, including deposition time, pH, bath temperature and tin chloride (SnCl2·2H2O) concentration were optimized by a factorial method.
View Article and Find Full Text PDFBackground: In fabrication of ZnO-based low voltage varistor, Bi2O3 and TiO2 have been used as former and grain growth enhancer factors respectively. Therefore, the molar ratio of the factors is quit important in the fabrication. In this paper, modeling and optimization of Bi2O3 and TiO2 was carried out by response surface methodology to achieve maximized electrical properties.
View Article and Find Full Text PDFBackground: The complexity of reactions and kinetic is the current problem of photodegradation processes. Recently, artificial neural networks have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the non-linear relationships between variables in complex systems. In this study, an artificial neural network was applied for modeling p-cresol photodegradation.
View Article and Find Full Text PDFThis study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX).
View Article and Find Full Text PDFLaser ablation-based nanoparticle synthesis in solution is rapidly becoming popular, particularly for potential biomedical and life science applications. This method promises one pot synthesis and concomitant bio-functionalization, is devoid of toxic chemicals, does not require complicated apparatus, can be combined with natural stabilizers, is directly biocompatible, and has high particle size uniformity. Size control and reduction is generally determined by the laser settings; that the size and size distribution scales with laser fluence is well described.
View Article and Find Full Text PDFColloidal Cu@CuAlO(2)-Al(2)O(3) bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a (60)Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO(2)-Al(2)O(3) nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown.
View Article and Find Full Text PDFBackground: The interactions of p-cresol photocatalytic degradation components were studied by response surface methodology. The study was designed by central composite design using the irradiation time, pH, the amount of photocatalyst and the p-cresol concentration as variables. The design was performed to obtain photodegradation % as actual responses.
View Article and Find Full Text PDFThe thermal effusivity of Al(2)O(3) and CuO nanofluids in different base fluids, i.e., deionized water, ethylene glycol and olive oil were investigated.
View Article and Find Full Text PDFThe rapid and green formation of spherical and dendritic silver nanostructures based on microwave irradiation time was investigated. Silver nanoparticles were successfully fabricated by reduction of Ag(+) in a water medium and using polyvinylpyrrolidone (PVP) as the stabilizing agent and without the use of any other reducing agent, and were compared with those synthesized by conventional heating method. UV-vis absorption spectrometry, transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and photon correlation spectroscopy (PCS) measurements, indicated that increasing the irradiation time enhanced the concentration of silver nanoparticles and slightly increased the particle size.
View Article and Find Full Text PDFThe optimization processes of photo degradation are complicated and expensive when it is performed with traditional methods such as one variable at a time. In this research, the condition of ortho-cresol (o-cresol) photo degradation was optimized by using a semi empirical method. First of all, the experiments were designed with four effective factors including irradiation time, pH, photo catalyst's amount, o-cresol concentration and photo degradation % as response by response surface methodology (RSM).
View Article and Find Full Text PDFThis manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature.
View Article and Find Full Text PDFCdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak.
View Article and Find Full Text PDFHigh demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr(6)O(11)) based ZnO varistor ceramics having breakdown voltages of 2.
View Article and Find Full Text PDF