Soft modes in crystals are lattice vibrations with frequencies that decrease and eventually vanish as the temperature approaches a critical point, e.g., a structural change due to a phase transition.
View Article and Find Full Text PDFThe time-resolved hard X-ray diffraction endstation KMC-3 XPP for optical pump/X-ray probe experiments at the electron storage ring BESSY II is dedicated to investigating the structural response of thin film samples and heterostructures after their excitation with ultrashort laser pulses and/or electric field pulses. It enables experiments with access to symmetric and asymmetric Bragg reflections via a four-circle diffractometer and it is possible to keep the sample in high vacuum and vary the sample temperature between ∼15 K and 350 K. The femtosecond laser system permanently installed at the beamline allows for optical excitation of the sample at 1028 nm.
View Article and Find Full Text PDFA novel, to the best of our knowledge, table-top hard X-ray source driven by femtosecond mid-infrared pulses provides 8 keV pulses at a 1 kHz repetition rate with an unprecedented flux of up to 1.5×10 X-ray photons/s. Sub-100 fs pulses at a center wavelength of 5 µm and multi-millijoule energy are generated in a four-stage optical parametric chirped-pulse amplifier and focused onto a thin Cu tape target.
View Article and Find Full Text PDFA table-top midwave-infrared optical parametric chirped pulse amplification (OPCPA) system generates few-cycle pulses with multi-10 GW peak power at a 1 kHz repetition rate. The all-optically synchronized system utilizes nonlinear crystals and a highly stable 2 µm picosecond pump laser based on Ho:YLiF. An excellent energy extraction is achieved by reusing the pump pulse after the third parametric power amplification stage, resulting in 3.
View Article and Find Full Text PDFHo-doped yttrium lithium fluoride chirped pulse amplification (CPA) is implemented with a high-gain regenerative amplifier (RA) and a two-stage booster amplifier. We demonstrate the generation of 52.5 mJ pulses with a duration of 2.
View Article and Find Full Text PDFIn phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process.
View Article and Find Full Text PDFUltrafast X-ray diffraction experiments require careful adjustment of the spatial overlap between the optical excitation and the X-ray probe pulse. This is especially challenging at high laser repetition rates. Sample distortions caused by the large heat load on the sample and the relatively low optical energy per pulse lead to only tiny signal changes.
View Article and Find Full Text PDF