Publications by authors named "Azizah Intan Pangesty"

Microheaters are used in several applications, including medical diagnostics, synthesis, environmental monitoring, and actuation. Conventional microheaters rely on thin-film electrodes microfabricated in a clean-room environment. However, low-cost alternatives based on conductive paste electrodes fabricated using printing techniques have started to emerge over the years.

View Article and Find Full Text PDF

Monetite granules were reported to be able to balance osteoclastic resorption and new bone formation. However, to date, the dehydration of preset brushite has been the well-known method for preparing monetite granules. In the present study, for the first time, monetite granules could be prepared from the phase transformation of calcium sulfate dihydrate (CSD) granules through immersion in NaHPO solution under hydrothermal conditions.

View Article and Find Full Text PDF

Objective:  This study aimed to fabricate and evaluate the phase purity and compressive strength of the nonsintered hydroxyapatite (HA) block obtained via phase transformation of set calcium sulfate dihydrate (CSD) block under hydrothermal conditions at different temperatures.

Materials And Methods:  Nonsintered HA block was prepared by immersion CSD block (4 mm in diameter and 8 mm in height) in a 1 mol/L sodium phosphate (NaPO) solution under hydrothermal conditions at 100°C, 140°C, and 180°C for 48 hours. X-ray diffraction was used to determine the crystalline phase of the obtained blocks.

View Article and Find Full Text PDF

Development of silver (Ag) modified titanium (Ti) as an antibacterial dental implant has recently been growing. Ag demonstrated an excellent antibacterial property without the risk of bacterial resistance. Hydrothermal treatment using AgNO solution is one of the facile and promising methods to modify Ti surface with Ag.

View Article and Find Full Text PDF

Polymeric scaffolds made of PCL/PLCL (ratio 1:3, respectively) blends have been developed by using the Thermally Induced Phase Separation (TIPS) process. A new additional technique has been introduced in this study by applying pre-heat treatment to the blend solution before the TIPS process. The main objective of this study is to evaluate the influence of the pre-heat treatment on mechanical properties.

View Article and Find Full Text PDF

Tissue engineering offers an alternate approach to providing vascular graft with potential to grow similar with native tissue by seeding autologous cells into biodegradable scaffold. In this study, we developed a combining technique by layering a sheet of cells onto a porous tubular scaffold. The cell sheet prepared from co-culturing human mesenchymal stem cells (hMSCs) and endothelial cells (ECs) were able to infiltrate through porous structure of the tubular poly (lactide-co-caprolactone) (PLCL) scaffold and further proliferated on luminal wall within a week of culture.

View Article and Find Full Text PDF

A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs) sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone) (PLCL) sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method.

View Article and Find Full Text PDF