This study aims to formulate a mathematical framework to examine how the Lassa virus spreads in humans of opposite genders. The stability of the model is analyzed at an equilibrium point in the absence of the Lassa fever. The model's effectiveness is evaluated using real-life data, and all the parameters needed to determine the basic reproduction number are estimated.
View Article and Find Full Text PDFPeristaltic flow through an elliptic channel has vital significance in different scientific and engineering applications. The peristaltic flow of Carreau fluid through a duct with an elliptical cross-section is investigated in this work . The proposed problem is defined mathematically in Cartesian coordinates by incorporating no-slip boundary conditions.
View Article and Find Full Text PDFThis article analyzes the significance of linear and quadratic convection on the dynamics of micropolar fluid due to a stretching surface in the presence of magnetic force and a rotational frame. Modern technological implementations have attracted researchers to inquire about non-Newtonian fluids, so the effect of linear and nonlinear convection conditions is accounted for in the dynamics of non-Newtonian fluid. The highly nonlinear governing equations are converted into a system of dimensionless ODEs by using suitable similarity transformations.
View Article and Find Full Text PDFDue to their unique microstructures, micropolar fluids have attracted enormous attention for their industrial applications, including convective heat and mass transfer polymer production and rigid and random cooling particles of metallic sheets. The thermodynamical demonstration is an integral asset for anticipating the ideal softening of heat transfer. This is because there is a decent connection between mathematical and scientific heat transfers through thermodynamic anticipated outcomes.
View Article and Find Full Text PDFThis article addresses the dynamic of three-dimensional rotating flow of Maxwell nanofluid across a linearly stretched sheet subject to a water-based fluid containing copper nanoparticles. Nanoparticles are used due to their fascinating features, such as exceptional thermal conductivity, which is crucial in modern nanotechnology and electronics. The primary goal of this comprehensive study is to examine the nanoparticles size and shape factors effect on the base fluid temperature.
View Article and Find Full Text PDFIn this research, we have considered the convective heat transfer analysis on peristaltic flow of Rabinowitsch fluid through an elliptical cross section duct. The Pseudoplastic and Dilatant characteristics of non-Newtonian fluid flow are analyzed in detail. The Rabinowitsch fluid model shows Pseudoplastic fluid nature for [Formula: see text] and Dilatant fluid behaviour for [Formula: see text] The governing equations are transformed to dimensionless form after substituting pertinent parameters and by applying the long wavelength approximation.
View Article and Find Full Text PDFThis study aims to determine the heat transfer properties of a magnetohydrodynamic Prandtl hybrid nanofluid over a stretched surface in the presence of bioconvection and chemical reaction effects. This article investigates the bio-convection, inclined magnetohydrodynamic, thermal linear radiations, and chemical reaction of hybrid nanofluid across stretching sheets. Also, the results are compared with the nanofluid flow.
View Article and Find Full Text PDFIn this research, the electro-osmotic effects are highlighted for a blood-based hybrid nanofluid flow across an artery infected with multiple stenosis. The artery has permeable walls together with slip boundary effects. The slip and permeable boundary conditions model the more realistic blood flow problems.
View Article and Find Full Text PDFA numerical investigation of three-dimensional hybrid nanomaterial micropolar fluid flow across an exponentially stretched sheet is performed. Recognized similarity transformations are adopted to convert governing equations from PDEs into the set ODEs. The dimensionless system is settled by the operating numerical approach bvp4c.
View Article and Find Full Text PDFPine wilt disease is one of the most serious conifer diseases: this is because pine trees contribute greatly to the economy and domestic wealth in Korea. Our model of this disease is based on the parametrisation of infectious pine trees in Korea for the period of 2010-2019. The model captures the growth in case onsets and the estimated results are almost compatible with the reported data.
View Article and Find Full Text PDFDuring the outbreak of an epidemic, it is of immense interest to monitor the effects of containment measures and forecast of outbreak including epidemic peak. To confront the epidemic, a simple model is used to simulate the number of affected patients of coronavirus disease in Romania and Pakistan. The model captures the growth in case onsets, and the estimated results are almost compatible with the actual reported cases.
View Article and Find Full Text PDFThis work is related to qualitative behaviour of an epidemic model of pine wilt disease. More precisely, we proved that the reproductive number has sharp threshold properties. It has been shown that how vector population can be reduced by the periodic use of insecticides.
View Article and Find Full Text PDF