Ultrasonic Liquid Phase Exfoliation (LPE) has gathered attention from both scientific and industrial communities for its accessibility and cost-effectiveness in producing graphene. However, this technique has faced challenges such as low yield and long production time. In this study, we developed a cyclic ultrasonication system to exfoliate expanded graphite (EG) by applying static pressure to a flow chamber to address these challenges.
View Article and Find Full Text PDFThe design of the resonant ultrasonic vibration-assisted laser cladding (R-UVALC) setup involved employing finite element analysis (FEA) to simulate the ultrasonic transducer, horn, and workpiece in a resonance state. The impact of R-UVALC on AlCrFeMnNi high-entropy alloys was assessed using various ultrasonic vibration amplitudes of 0, 5, 10, and 15 µm, with a constant frequency of 20 kHz. Ultrasonic vibrations reduced pores and cracks and increased the clad breadth, melt pool wetting angle, and laser-clad layer consistency.
View Article and Find Full Text PDFAdditive manufacturing (AM) exhibits a prime increment in manufacturing technology development. The last few decades have witnessed massive improvement in this field of research, including the growth in the process, equipment, and materials. Irrespective of compelling technological advancements, technical challenges provoke the application and development of these technologies.
View Article and Find Full Text PDFUltrasonic shot peening(USP) is an advanced surface treatment technology for obtaining excellent surface properties or manufacturing a three-dimensional curved surface of the metal sheets. The impact of the medium driven by ultrasonic vibration is significant to parameter optimization and excellent performance of the USP technology. However, the impact characteristics of the medium lack careful study, which is a complex dynamic analysis involving many factors, such as collision, plastic deformation, air pressure, etc.
View Article and Find Full Text PDFService performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research.
View Article and Find Full Text PDF