RNA/DNA hybrids are processed by RNases H1 and H2, while single ribonucleoside-monophosphates (rNMPs) embedded in genomic DNA are removed by the error-free, RNase H2-dependent ribonucleotide excision repair (RER) pathway. In the absence of RER, however, topoisomerase 1 (Top1) can cleave single genomic rNMPs in a mutagenic manner. In RNase H2-deficient mice, the accumulation of genomic rNMPs above a threshold of tolerance leads to catastrophic genomic instability that causes embryonic lethality.
View Article and Find Full Text PDFCellular levels of ribonucleoside triphosphates (rNTPs) are much higher than those of deoxyribonucleoside triphosphates (dNTPs), thereby influencing the frequency of incorporation of ribonucleoside monophosphates (rNMPs) by DNA polymerases (Pol) into DNA. RNase H2-initiated ribonucleotide excision repair (RER) efficiently removes single rNMPs in genomic DNA. However, processing of rNMPs by Topoisomerase 1 (Top1) in absence of RER induces mutations and genome instability.
View Article and Find Full Text PDFMolecular combing and gel electrophoretic studies revealed endogenous nicks with free 3'OH ends at ∼100 kb intervals in the genomic DNA (gDNA) of unperturbed and G1-synchronized Saccharomyces cerevisiae cells. Analysis of the distribution of endogenous nicks by Nick ChIP-chip indicated that these breaks accumulated at active RNA polymerase II (RNAP II) promoters, reminiscent of the promoter-proximal transient DNA breaks of higher eukaryotes. Similar periodicity of endogenous nicks was found within the ribosomal rDNA cluster, involving every ∼10th of the tandemly repeated 9.
View Article and Find Full Text PDFDuring transcription, the nascent transcript behind an elongating RNA polymerase (RNAP) can invade the DNA duplex and hybridize with the complementary DNA template strand, generating a three-stranded "R-loop" structure, composed of an RNA:DNA duplex and an unpaired non-template DNA strand. R-loops can be strongly associated with actively transcribed loci by all RNAPs including the mitochondrial RNA polymerase (mtRNAP). In this chapter, we describe two protocols for the detection of RNA:DNA hybrids in living budding yeast cells, one that uses conventional chromatin immunoprecipitation (ChIP-qPCR) and one that uses DNA:RNA immunoprecipitation (DRIP-qPCR).
View Article and Find Full Text PDFDuring transcription, the nascent RNA can invade the DNA template, forming extended RNA-DNA duplexes (R-loops). Here we employ ChIP-seq in strains expressing or lacking RNase H to map targets of RNase H activity throughout the budding yeast genome. In wild-type strains, R-loops were readily detected over the 35S rDNA region, transcribed by Pol I, and over the 5S rDNA, transcribed by Pol III.
View Article and Find Full Text PDFMethods Mol Biol
March 2014
Pulsed-field gel electrophoresis (PFGE) is a technique that resolves chromosome-sized DNA molecules in an agarose gel. As well as DNA mapping and karyotyping applications, PFGE techniques are well adapted to follow DNA rearrangements over time in a quantitative manner. Because of the very large sizes of the DNA molecules analyzed, DNA preparation, electrophoresis, and Southern blotting processes present unique challenges in PFGE experiments.
View Article and Find Full Text PDFTo better understand the role of topoisomerase activity in relieving transcription-induced supercoiling, yeast genes encoding rRNA were visualized in cells deficient for either or both of the two major topoisomerases. In the absence of both topoisomerase I (Top1) and topoisomerase II (Top2) activity, processivity was severely impaired and polymerases were unable to transcribe through the 6.7-kb gene.
View Article and Find Full Text PDFPre-rRNA transcription by RNA Polymerase I (Pol I) is very robust on active rDNA repeats. Loss of yeast Topoisomerase I (Top1) generated truncated pre-rRNA fragments, which were stabilized in strains lacking TRAMP (Trf4/Trf5-Air1/Air2-Mtr4 polyadenylation complexes) or exosome degradation activities. Loss of both Top1 and Top2 blocked pre-rRNA synthesis, with pre-rRNAs truncated predominately in the 18S 5' region.
View Article and Find Full Text PDFRibosomal processing requires a series of endo- and exonucleolytic steps for the production of mature ribosomes, of which most have been described. To ensure ribosome synthesis, 3' end formation of rRNA uses multiple nucleases acting in parallel; however, a similar parallel mechanism had not been described for 5' end maturation. Here, we identify Rrp17p as a previously unidentified 5'-3' exonuclease essential for ribosome biogenesis, functioning with Rat1p in a parallel processing pathway analogous to that of 3' end formation.
View Article and Find Full Text PDFDuring transcription termination by RNA polymerase II on protein-coding genes, the nuclear 5' exonuclease Rat1/Xrn2 degrades the nascent transcript downstream from the polyadenylation site and "torpedoes" the polymerase. We report that the activity of Rat1 is also required for efficient termination by RNA polymerase I (Pol I) on the rDNA. In strains lacking catalytically active Rat1 or its cofactor Rai1, Pol I reads through the major, "Reb1-dependent" terminator (T1) but stops downstream at the "fail-safe" terminator (T2) and replication fork barrier (RFB).
View Article and Find Full Text PDFTrf4 is the poly(A) polymerase component of TRAMP4, which stimulates nuclear RNA degradation by the exosome. We report that in Saccharomyces cerevisiae strains lacking Trf4, cryptic transcripts are detected from regions of repressed chromatin at telomeres and the rDNA intergenic spacer region (IGS1-R), and at CEN3. Degradation of the IGS1-R transcript was reduced in strains lacking TRAMP components, the core exosome protein Mtr3 or the nuclear-specific exosome component Rrp6.
View Article and Find Full Text PDFRecent years have seen a dramatic increase in the number of ribosome synthesis factors identified in the yeast Saccharomyces cerevisiae. Most of these are not predicted to directly catalyze either RNA processing or modification, and they are therefore predicted to function in some sense as assembly factors, promoting the assembly and/or disassembly of the processing and modification machinery, binding of the ribosomal proteins and correct folding of the pre-rRNAs and rRNAs. In contrast, ribosome synthesis in E.
View Article and Find Full Text PDFEscherichia coli dnaK-ts mutants are defective in the late stages of ribosome biogenesis at high temperature. Here, we show that the 21S, 32S and 45S ribosomal particles that accumulate in the dnaK756-ts mutant at 44 degrees C contain unprocessed forms of their 16S and 23S rRNAs (partially processed in the case of 45S particles). Their 5S rRNA stoichiometry and ribosomal protein composition are typical of the genuine ribosomal precursors found in a wild-type (dnaK+) strain.
View Article and Find Full Text PDF