Publications by authors named "Azim Surani"

Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) are the founder cells that develop into mature gametes. PGCs emerge during weeks 2-3 of human embryo development. Pluripotency genes are reactivated during PGC specification, including Krüppel-like factor KLF4, but its precise role in PGC development is unclear.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) are the precursors of sperm and eggs. They undergo genome-wide epigenetic reprogramming to erase epigenetic memory and reset the genomic potential for totipotency. Global DNA methylation erasure is a crucial part of epigenetic resetting when DNA methylation levels decrease across the genome to <5%.

View Article and Find Full Text PDF

DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear.

View Article and Find Full Text PDF

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles.

View Article and Find Full Text PDF

Human primordial germ cell (PGC) development initiates about 2 weeks after fertilization during embryogenesis. Unique molecular events follow, including epigenetic resetting, to establish functional gametes (egg and sperm). Due to the inaccessibility of human embryos, it is essential to have an amenable experimental platform to investigate the mechanisms and potential dysfunctions of the events.

View Article and Find Full Text PDF

Human primordial germ cells (hPGCs), the precursors of eggs and sperm, start their complex development shortly after specification and during their migration to the primitive gonads. Here, we describe protocols for specifying hPGC-like cells (hPGCLCs) from resetting precursors and progressing them with the support of human hindgut organoids. Resetting hPGCLCs (rhPGCLCs) are specified from human embryonic stem cells (hESCs) transitioning from the primed into the naive state of pluripotency.

View Article and Find Full Text PDF

Germline commitment following primordial germ cell (PGC) specification during early human development establishes an epigenetic programme and competence for gametogenesis. Here we follow the progression of nascent PGC-like cells derived from human embryonic stem cells in vitro. We show that switching from BMP signalling for PGC specification to Activin A and retinoic acid resulted in DMRT1 and CDH5 expression, the indicators of migratory PGCs in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Human germline-soma segregation happens during weeks 2-3 in embryo development, and researchers are studying the specification of primordial germ cells (PGCs) using in vitro models and detailed in vivo datasets.
  • The study reveals a specific molecular signature that indicates a temporary increase in the potential for germ cell development during early epiblast development post-implantation.
  • Additionally, it finds that both PGCs and amniotic cells originate from similar progenitors in the embryo, with TFAP2A being essential for PGC formation, while TFAP2C takes over later in the genetic processes related to PGC fate.
View Article and Find Full Text PDF

The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse.

View Article and Find Full Text PDF

Epigenetic resetting in the mammalian germ line entails acute DNA demethylation, which lays the foundation for gametogenesis, totipotency, and embryonic development. We characterize the epigenome of hypomethylated human primordial germ cells (hPGCs) to reveal mechanisms preventing the widespread derepression of genes and transposable elements (TEs). Along with the loss of DNA methylation, we show that hPGCs exhibit a profound reduction of repressive histone modifications resulting in diminished heterochromatic signatures at most genes and TEs and the acquisition of a neutral or paused epigenetic state without transcriptional activation.

View Article and Find Full Text PDF

Human primordial germ cells (hPGCs), the precursors of sperm and eggs, are specified during weeks 2-3 after fertilization. Few studies on ex vivo and in vitro cultured human embryos reported plausible hPGCs on embryonic day (E) 12-13 and in an E16-17 gastrulating embryo. In vitro, hPGC-like cells (hPGCLCs) can be specified from the intermediary pluripotent stage or peri-gastrulation precursors.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) are small RNAs bound by PIWI-clade Argonaute proteins that function to silence transposable elements (TEs). Following mouse primordial germ cell (mPGC) specification around E6.25, fetal piRNAs emerge in male gonocytes from E13.

View Article and Find Full Text PDF

In Brief: Understanding the establishment of post-fertilization totipotency has broad implications for modern biotechnologies. This review summarizes the current knowledge of putative egg components governing this process following natural fertilization and after somatic cell nuclear transfer.

Abstract: The mammalian oocyte is a unique cell, and comprehending its physiology and biology is essential for understanding fertilization, totipotency and early events of embryogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Gonadal development involves sex determination leading to the maturation of testes or ovaries, but understanding it in humans has been difficult due to limited tissue access and differences with mouse models.
  • The researchers created detailed maps of human gonads from the first and second trimesters using advanced techniques like single-cell transcriptomics and fluorescent microscopy to identify key regulatory programs in germline and somatic cell development.
  • They pinpointed specific cell types and signaling mechanisms in both males and females, revealing insights into ovarian development and male fetal macrophages, which could inform future in vitro gonadogenesis studies.
View Article and Find Full Text PDF
Article Synopsis
  • - Germline-soma segregation is crucial during mammalian development, and this study focuses on understanding the epigenetic factors involved in human primordial germ cell (hPGC) development using both in vivo models and stem cell techniques that mimic early embryonic stages.
  • - Researchers found that while certain morphogens can temporarily influence mesendoderm development, further activation shifts the focus towards mesoderm and endoderm, with lower levels of the transcription factor OTX2 enhancing the likelihood of hPGC formation.
  • - The study identifies core germline genes regulated by the transcription factors SOX17 and TFAP2C, establishing a network of enhancers crucial for germline development, and highlights the potential of an optimized CR
View Article and Find Full Text PDF

Greater transcultural and transdisciplinary engagement within Muslim contexts and deliberate inclusion of diverse Muslim voices in the development of international guidelines is required to improve understanding of the state of stem cell science, strengthen thinking about attendant ethical complexities, enhance compliance, deepen public deliberation, increase trust, and strengthen practice standards.

View Article and Find Full Text PDF

Rabbit embryos develop as bilaminar discs at gastrulation as in humans and most other mammals, whereas rodents develop as egg cylinders. Primordial germ cells (PGCs) appear to originate during gastrulation according to many systematic studies on mammalian embryos. Here, we show that rabbit PGC (rbPGC) specification occurs at the posterior epiblast at the onset of gastrulation.

View Article and Find Full Text PDF
Article Synopsis
  • - The International Society for Stem Cell Research has updated its Guidelines for Stem Cell Research to reflect recent advancements in the field and related ethical, social, and policy issues since 2016.
  • - Despite the updates, the core principles of the Guidelines remain unchanged, ensuring they continue to serve as a standard reference for various stakeholders, including scientists, regulators, and patients.
  • - The document includes a summary of key updates and issues that have emerged in the evolving landscape of stem cell science and its implications for society.
View Article and Find Full Text PDF

The ISSCR Guidelines for Stem Cell Research and Clinical Translation were last revised in 2016. Since then, rapid progress has been made in research areas related to in vitro culture of human embryos, creation of stem cell-based embryo models, and in vitro gametogenesis. Therefore, a working group of international experts was convened to review the oversight process and provide an update to the guidelines.

View Article and Find Full Text PDF

Post-implantation embryo development commences with a bilaminar disc in most mammals, including humans. Whereas access to early human embryos is limited and subject to greater ethical scrutiny, studies on non-primate embryos developing as bilaminar discs offer exceptional opportunities for advances in gastrulation, the germline, and the basis for evolutionary divergence applicable to human development. Here, we discuss the advantages of investigations in the pig embryo as an exemplar of development of a bilaminar disc embryo with relevance to early human development.

View Article and Find Full Text PDF

Murine animal models from genetically modified pluripotent stem cells (PSCs) are essential for functional genomics and biomedical research, which require germline transmission for the establishment of colonies. However, the quality of PSCs, and donor-host cell competition in chimeras often present strong barriers for germline transmission. Here, we report efficient germline transmission of recalcitrant PSCs via blastocyst complementation, a method to compensate for missing tissues or organs in genetically modified animals via blastocyst injection of PSCs.

View Article and Find Full Text PDF

Naive pluripotency can be maintained in medium with two inhibitors plus leukemia inhibitory factor (2i/LIF) supplementation, which primarily affects canonical WNT, FGF/ERK, and JAK/STAT3 signaling. However, whether one of these three supplements alone is sufficient to maintain naive self-renewal remains unclear. Here we show that LIF alone in medium is sufficient for adaptation of 2i/L-ESCs to embryonic stem cells (ESCs) in a hypermethylated state (L-ESCs).

View Article and Find Full Text PDF