Publications by authors named "Aziliz Lecomte"

Implantable active dense CMOS neural probes unlock the possibility of spatiotemporally resolving the activity of hundreds of single neurons in multiple brain circuits to investigate brain dynamics. Mapping neural dynamics in brain circuits with anatomical structures spanning several millimeters, however, remains challenging. Here, we demonstrate the first CMOS neural probe for mapping intracortical neural dynamics (both LFPs and spikes) in awake, behaving mice from an area >4 mm.

View Article and Find Full Text PDF

Brain organoids is an exciting technology proposed to advance studies on human brain development, diseases, and possible therapies. Establishing and applying such models, however, is hindered by the lack of technologies to chronically monitor neural activity. A promising new approach comprising self-standing biosensing microdevices capable of achieving seamless tissue integration during cell aggregation and culture.

View Article and Find Full Text PDF

A Parylene C polymer neural probe array with 64 electrodes purposefully positioned across 8 individual shanks to anatomically match specific regions of the hippocampus was designed, fabricated, characterized, and implemented for enabling recording in deep brain regions in freely moving rats. Thin film polymer arrays were fabricated using surface micromachining techniques and mechanically braced to prevent buckling during surgical implantation. Importantly, the mechanical bracing technique developed in this work involves a novel biodegradable polymer brace that temporarily reduces shank length and consequently, increases its stiffness during implantation, therefore enabling access to deeper brain regions while preserving a low original cross-sectional area of the shanks.

View Article and Find Full Text PDF

Active high-density electrode arrays realized with complementary metal-oxide-semiconductor (CMOS) technology provide electrophysiological recordings from several thousands of closely spaced microelectrodes. This has drastically advanced the spatiotemporal recording resolution of conventional multielectrode arrays (MEAs). Thus, today's electrophysiology in neuronal cultures can exploit label-free electrical readouts from a large number of single neurons within the same network.

View Article and Find Full Text PDF

Large-scale neural recordings with high spatial and temporal accuracy are instrumental to understand how the brain works. To this end, it is of key importance to develop probes that can be conveniently scaled up to a high number of recording channels. Despite recent achievements in complementary metal-oxide semiconductor (CMOS) multi-electrode arrays probes, in current circuit architectures an increase in the number of simultaneously recording channels would significantly increase the total chip area.

View Article and Find Full Text PDF

This review intends to present a comprehensive analysis of the mechanical considerations for chronically-implanted neural probes. Failure of neural electrical recordings or stimulation over time has shown to arise from foreign body reaction and device material stability. It seems that devices that match most closely with the mechanical properties of the brain would be more likely to reduce the mechanical stress at the probe/tissue interface, thus improving body acceptance.

View Article and Find Full Text PDF