Publications by authors named "Aziah Ismail"

Aptamers have emerged as prominent ligands in clinical diagnostics because they provide various advantages over antibodies, such as quicker generation time, reduced manufacturing costs, minimal batch-to-batch variability, greater modifiability, and improved thermal stability. In the present study, we isolated and characterized DNA aptamers that can specifically bind to the hemolysin E (HlyE) antigen of Salmonella Typhi for future development of typhoid diagnostic tests. The DNA aptamers against Salmonella Typhi HlyE were isolated using systematic evolution of ligands by exponential enrichment (SELEX), and their binding affinity and specificity were assessed utilizing enzyme-linked oligonucleotide assay (ELONA).

View Article and Find Full Text PDF

Background: Melioidosis is difficult to diagnose due to its wide range of clinical symptoms. The culture method is time-consuming and less sensitive, emphasizing the importance of rapid and accurate diagnostic tests for melioidosis. Burkholderia invasion protein D (BipD) of Burkholderia pseudomallei is a potential diagnostic biomarker.

View Article and Find Full Text PDF

A highly accurate, rapid, portable, and robust platform for detecting serovar Typhi ( Typhi) is crucial for early-stage diagnosis of typhoid to avert and control the outbreaks of this pathogen, which threaten global public health. This study presents a proof-of-concept for our developed label-free electrochemical DNA biosensor system for Typhi detection, which employs a printed circuit board gold electrode (PCBGE), integrated with a portable potentiostat reader. Initially, the functionalized DNA biosensor and target detection were characterized using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) methods using a benchtop potentiostat.

View Article and Find Full Text PDF

Background: The techniques for detecting single nucleotide polymorphisms (SNP) require lengthy and complex experimental procedures and expensive instruments that may only be available in some laboratories. Thus, a deoxyribonucleic acid (DNA)-based lateral flow assay (LFA) was developed as a point-of-care test (POCT) diagnostic tool for genotyping. In this study, single nucleotide variation (E101K) in the low-density lipoprotein receptor gene leading to familial hypercholesterolemia (FH) was chosen as a model.

View Article and Find Full Text PDF

The performance of the graphene-based field-effect transistor (FET) as a biosensor is based on the output drain current (I). In this work, the signal-to-noise ratio (SNR) was investigated to obtain a high-performance device that produces a higher I value. Using the finite element method, a novel top-gate FET was developed in a three-dimensional (3D) simulation model with the titanium dioxide-reduced graphene oxide (TiO-rGO) nanocomposite as the transducer material, which acts as a platform for biosensing application.

View Article and Find Full Text PDF

The emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE).

View Article and Find Full Text PDF

The development of rapid, accurate, and efficient detection methods for Salmonella can significantly control the outbreak of salmonellosis that threatens global public health. Despite the high sensitivity and specificity of the microbiological, nucleic-acid, and immunological-based methods, they are impractical for detecting samples outside of the laboratory due to the requirement for skilled individuals and sophisticated bench-top equipment. Ideally, an electrochemical biosensor could overcome the limitations of these detection methods since it offers simplicity for the detection process, on-site quantitative analysis, rapid detection time, high sensitivity, and portability.

View Article and Find Full Text PDF

This scoping review aims to provide a comprehensive overview of human melioidosis in Southeast Asia as well as to highlight knowledge gaps in the prevalence and risk factors of this life-threatening disease using available evidence-based data for better diagnosis and treatment. Preferred Reporting Items for Systematic Review and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) was used as the guideline for this review. The literature search was conducted on 23 March 2022 through two electronic databases (PubMed and Scopus) using lists of keywords referring to the Medical Subject Headings (MeSH) thesaurus.

View Article and Find Full Text PDF

Salmonella enterica serovar Typhi (S. Typhi) that has developed resistance to many antimicrobials poses a serious challenge to public health. Hence, this study aimed to systematically determine the prevalence of antimicrobial resistance (AMR) in S.

View Article and Find Full Text PDF

Infectious diseases are the world's greatest killers, accounting for millions of deaths worldwide annually, especially in low-income countries. As the risk of emerging infectious diseases is increasing, it is critical to rapidly diagnose infections in the early stages and prevent further transmission. However, current detection strategies are time-consuming and have exhibited low sensitivity.

View Article and Find Full Text PDF

Water- and food-related health issues have received a lot of attention recently because food-poisoning bacteria, in particular, are becoming serious threats to human health. Currently, techniques used to detect these bacteria are time-consuming and laborious. To overcome these challenges, the colorimetric strategy is attractive because it provides simple, rapid and accurate sensing for the detection of spp.

View Article and Find Full Text PDF

The development of precise and efficient diagnostic tools enables early treatment and proper isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19). The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time, the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the interest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities such as rapid response, simplicity of operation, portability, and readiness for on-site screening of infection.

View Article and Find Full Text PDF

Recently, CRISPR-Cas system-based assays for bacterial detection have been developed. The aim of this scoping review is to map existing evidence on the utilization of CRISPR-Cas systems in the development of bacterial detection assays. A literature search was conducted using three databases (PubMed, Scopus, and Cochrane Library) and manual searches through the references of identified full texts based on a PROSPERO-registered protocol (CRD42021289140).

View Article and Find Full Text PDF

Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly.

View Article and Find Full Text PDF

Despite the advanced understanding of the disease, melioidosis, an infection caused by , continues to be of global interest. The bacterial virulence factor, type six secretion system-5 (T6SS-5), in particular, is an essential factor for that is associated with internalization and intracellular survival of the pathogen. To detect the virulence gene cluster, this study has successfully developed a novel seven-gene (C-5, D-5, A-5, -5, B-5, F-5, and G-5) multiplex PCR assay.

View Article and Find Full Text PDF

The identification of viral RNA using reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the gold standard for identifying an infection caused by SARS-CoV-2. The limitations of RT-qPCR such as requirement of expensive instruments, trained staff and laboratory facilities led to development of rapid antigen tests (RATs). The performance of RATs has been widely evaluated and found to be varied in different settings.

View Article and Find Full Text PDF

This study is a cross-sectional, observational analysis of the COVID-19 pandemic in Africa, to understand the progression of the disease across the continent. Published data on COVID-19 from 20 January 2020 to 21 June 2021 were obtained and analyzed. Case fatality ratios, as well as case growth rates and other indices were computed.

View Article and Find Full Text PDF

Typhoid fever, also known as typhoid, is a life-threatening bacterial infection that remains a global health concern. The infection is associated with a significant morbidity and mortality rate, resulting in an urgent need for specific and rapid detection tests to aid prevention and management of the disease. The present review aims to assess the specificity and sensitivity of the available literature on the immunodiagnostics of typhoid fever.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has attracted public attention. The gold standard for diagnosing COVID-19 is reverse transcription-quantitative polymerase chain reaction (RT-qPCR). However, RT-qPCR can only be performed in centralized laboratories due to the requirement for advanced laboratory equipment and qualified workers.

View Article and Find Full Text PDF

Large-scale food-borne outbreaks caused by are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of detection approaches covering their basic principles, characteristics, applications, and performances.

View Article and Find Full Text PDF

Horseshoe crabs (HSCs) are living fossil species of marine arthropods with a long evolutionary history spanning approximately 500 million years. Their survival is helped by their innate immune system that comprises cellular and humoral immune components to protect them against invading pathogens. To help understand the genetic mechanisms involved, the present study utilised the Illumina HiSeq platform to perform transcriptomic analysis of hemocytes from the HSC, Tachypleus gigas, that were challenged with lipopolysaccharides (LPS).

View Article and Find Full Text PDF

This paper reports on the complete mitochondrial (mt) genome of a horseshoe crab, (), in Kuala Kemaman, Terengganu, Malaysia. Whole-genome sequencing of hemocyte DNA was performed with Illumina HiSeq system and the generated reads were assembled with ABySS 2.1.

View Article and Find Full Text PDF

A multiplex rapid detection system, based on a PCR-lateral flow biosensor (mPCR-LFB) was developed to identify Typhi and Paratyphi A from suspected carriers. The lower detection limit for . Typhi and .

View Article and Find Full Text PDF

Melioidosis is a severe disease caused by (), a Gram-negative environmental bacterium. It is endemic in Southeast Asia and Northern Australia, but it is underreported in many other countries. The principal routes of entry for are skin penetration, inhalation, and ingestion.

View Article and Find Full Text PDF

There is limited empirical evidence arguing against accepting and using podcasts for educational purposes. This may in part, explain the recent surge in the acceptance of podcasts for pedagogy, alongside the COVID-19 pandemic. Both students and lecturers have been greatly affected by this pandemic which may explain the uptake in the use of podcasts.

View Article and Find Full Text PDF