Publications by authors named "Azhar Irfan"

Combining natural polysaccharides with synthetic materials improves their functional properties which are essential for designing sustained-release drug delivery systems. In this context, the Aloe vera leaf mucilage/hydrogel (ALH) was reacted with acrylic acid (AA) to synthesize a copolymerized hydrogel, i.e.

View Article and Find Full Text PDF

Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges.

View Article and Find Full Text PDF

Herein, the hydrogel from the leaf of the Aloe vera plant (ALH) was succinylated (SALH) and saponified (NaSALH). The FTIR, solid-state CP/MAS C NMR, and SEM-EDX spectroscopic analyses witnessed the formation of SALH and NaSALH from ALH. The pH for NaSALH was found to be 4.

View Article and Find Full Text PDF

Herein, a drug delivery system (SSH--MAA) based on the mucilage from seeds of (SSH; polymer) and methacrylic acid (MAA; monomer) is introduced for the controlled delivery of venlafaxine HCl using a sustainable chemical approach. The optimized conditions for the designing of the ideal formulation (M4) of SSH--MAA were found to be 2.5% (w/w) of SSH, 30.

View Article and Find Full Text PDF

Owing to the desirable structures, covalent organic frameworks (COFs) have emerged as promising porous crystalline materials in bioanalytical and biomedical science. However, the application of their merits for analysis of hydrophobic peptides in complicated bio-samples has not been well investigated, possibly due to challenges in developing materials with high-specific binding effect of target peptides and accurate controllable pore-size for high selectivity. In this study, we proposed the size-exclusive peptide enrichment with Azo-COF constructed from 1,3,6,8-tetrabromopyrene (TBPy) building block and p-azoaniline linking units.

View Article and Find Full Text PDF

The recent development in the area of IoT technologies is likely to be implemented extensively in the next decade. There is a great increase in the crime rate, and the handling officers are responsible for dealing with a broad range of cyber and Internet issues during investigation. IoT technologies are helpful in the identification of suspects, and few technologies are available that use IoT and deep learning together for face sketch synthesis.

View Article and Find Full Text PDF

As an important post-translational modification of proteins, phosphorylation plays a key role in regulating a variety of complicated biological reactions. Owing to the fact that phosphopeptides are low abundant and the ionization efficiency could be suppressed in mass spectroscopic detection, highly efficient and selective enrichment methods are essential to identify protein phosphorylation by mass spectrometry. Here, we develop novel titanium oxide coated core shell mesoporous silica (CSMS@TiO) nanocomposites for enrichment of phosphopeptides with simultaneous exclusion of massive proteins.

View Article and Find Full Text PDF

Dissolution testing plays many important roles throughout the pharmaceutical industry, from the research and development of drug products to the control and evaluation of drug quality. However, it is a challenging task to perform both high-efficient separation and high-temporal detection to achieve accurate dissolution profile of each active ingredient dissolved from a drug tablet. In our study, we report a novel non-manual-operation method for performing the automatic dissolution testing of drug tablets, by combining a program-controlled sequential analysis and high-speed capillary electrophoresis for efficient separation of active ingredients.

View Article and Find Full Text PDF

We propose a new capillary electrophoresis (CE)-based open-tubular immobilized enzyme microreactor (OT-IMER) and its application in acetylcholinesterase (AChE) assays. The IMER is fabricated at the capillary inlet (reactor length of ∼1 cm) with the inner surface modified by a micropore-structured layer (thickness of ∼220 nm, pore size of ∼15-20 nm). The use of IMER accomplishes the enzymatic reaction and separation/detection of the products in the same capillary within 3 min.

View Article and Find Full Text PDF

Core-shell mesoporous silica (CSMS) microspheres with tunable mesopores in the shell are highly desired in various bioapplications. With novel CSMS microspheres that are synthesized using a convenient two-phase process, we report in this study the analysis of low molecular-weight (MW < 30 kDa) proteins by combining size-exclusion separation and enzyme immobilization. The obtained CSMS microspheres possess uniform diameter (1.

View Article and Find Full Text PDF