Small-molecule organic single crystals (SCs) with an inherent in-plane anisotropic nature enable direct linearly polarized light emission without the need for spatially separated polarizers and complex optical structures. However, the device performance is severely restricted by the starvation of appropriate SC emitters and the difficulty in the construction of efficient SC electroluminescence (EL) devices, leading to a low external quantum efficiency (EQE) of usually smaller than 1.5%.
View Article and Find Full Text PDFMicro-/nanosized organic-inorganic hybrid perovskite single crystals (SCs) with appropriate thickness and high crystallinity are promising candidates for high-performance electroluminescent (EL) devices. However, their small lateral size poses a great challenge for efficient device construction and performance optimization, causing perovskite SC-based light-emitting diodes (PSC-LEDs) to demonstrate poor EL performance. Here, we develop a facile liquid-insulator bridging (LIB) strategy to fabricate high-luminance PSC-LEDs based on single-crystalline CHNHPbBr microflakes.
View Article and Find Full Text PDF