A batch-scale electro-Fenton (EF) process was performed using graphite anode and waste battery-based Fe -Mn -Zn/C electrocatalyst coated on low-cost graphite felt cathode. The effectiveness of the EF's performance was evident with around 83.9 + 4.
View Article and Find Full Text PDFThe present work demonstrates a novel strategy of synthesizing iron-biochar (Fe@BC) composite made with the waste iron bottle cap and sugar cane bagasse for implementation in the three-dimensional electro-Fenton (3DEF) process. The catalytic ability of the Fe@BC composite was explored to remediate the sodium dodecyl sulphate (SDS) surfactant from wastewater at neutral pH. At the optimum operating condition of Fe@BC dose of 1.
View Article and Find Full Text PDFEthylene glycol or 1,2-ethanediol (EG) is a persistent and toxic substance in the environment and extensively applied in petrochemical, surfactants, antifreeze, asphalt emulsion paints, cosmetics, plastics, and polyester fiber industries. Degradation of EG by using ultraviolet (UV) activated hydrogen peroxide (HO) and persulfate (PS) or persulfate anion (SO) based advanced oxidation processes (AOPs) were explored. The result obtained demonstrate that UV/PS (85.
View Article and Find Full Text PDFThe current research demonstrates the efficiency of a low-cost MIL-53(Fe)-metal-organic framework (MOF) derived FeO@C (MIL-53(Fe)@FeO@C) electrocatalyst in a batch-scale electro-Fenton (EF) process for the degradation of salicylic acid (SA) from wastewater. The electrocatalyst was prepared from the combination of polyethylene terephthalate (PET) and iron scrap wastes. The result showed 91.
View Article and Find Full Text PDFThe discharge of emerging pollutants, such as beta-blockers (BB), has been recognized as one of the major threats to the environment due to the ecotoxicity associated with these emerging pollutants. The BB are prescribed to treat high blood pressure and cardiovascular diseases; however, even at lower concentration, these pollutants can pose eco-toxic impacts towards aquatic organisms. Additionally, owing to their recalcitrant nature, BB are not effectively removed through conventional technologies, such as activated sludge process, trickling filter and moving bed bioreactor; thus, it is essential to understand the degradation mechanism of BB in established as well as embryonic technologies, like adsorption, electro-oxidation, Fenton process, ultraviolet-based advance oxidation process, ozonation, membrane systems, wetlands and algal treatment.
View Article and Find Full Text PDFBioelectrochemical systems (BESs) are a unique group of wastewater remediating technology that possesses the added advantage of valuable recovery with concomitant wastewater treatment. Moreover, due to the application of robust microbial biocatalysts in BESs, effective removal of emerging contaminants (ECs) can be accomplished in these BESs. Thus, this review emphasizes the recent demonstrations pertaining to the removal of complex organic pollutants of emerging concern present in wastewater through BES.
View Article and Find Full Text PDFPetrochemical industry is one of the major and rapidly growing industry that generates a variety of toxic and recalcitrant organic pollutants as by-products, which are not only harmful to the aquatic animals but also affects human health. The majority of the components of petrochemical wastewater (PW) are carcinogenic, genotoxic and phytotoxic in nature; hence, this complex wastewater generated from different petrochemical processes should be efficiently treated prior to its disposal in natural water bodies. The established technologies like advanced oxidation, membrane bioreactor, electrocoagulation and activated sludge process employed for the treatment of PW are highly energy intensive and incurs high capital and operation cost.
View Article and Find Full Text PDF