The fruit extract ofand the eutectic-based ionic liquid were utilized, in an eco-friendly, inexpensive, simple method, for synthesizing zinc oxide nanoparticles (ZnO NPs). The influence of the reducing, capping and stabilizing agents, in both mediums, on the structure, optical, and morphological properties of ZnO NPs was extensively investigated. The surface plasmon resonance peaks were observed at 340 nm and 320 nm for the fruit-based and the eutectic-based ionic liquid mediums, respectively, indicating the formation of ZnO NPs.
View Article and Find Full Text PDFIn this study, a simple, low-cost, and environmentally friendly method for the green synthesis of ZnO/CuO nanocomposites (NCs) using parsley extract was developed. The phytochemical components in the parsley leaf extract reacted with precursor salts in solution and yielded ZnO/CuO NCs. The synthesis of the green-synthesized NCs was confirmed via various characterization techniques, including UV-vis spectroscopy, X-ray diffraction (XRD) analysis, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM).
View Article and Find Full Text PDFChemical bath deposition (CBD) technique is utilized to grow lead-oxide (PbO) nanostructures (NSs) over PbO seed fabricated by physical vapor deposition (PVD) method on glass substrates. The effect of growth temperatures 50 and 70 °C on the surface topography, optical properties, and crystal structure of lead-oxide NSs has been studied. The investigated results suggested that the growth temperature has a huge and very considerable influence on the PbO NS, and the fabricated PbO NS has been indexed as the PbO polycrystalline tetragonal phase.
View Article and Find Full Text PDFA low-cost, simple, inexpensive, and environmentally friendly method has been employed for synthesizing magnetite nanoparticles (FeO NPs). In this study, weeping willow ( L.) aqueous leaf extract has been utilized as a reducing, capping, and stabilizing agent.
View Article and Find Full Text PDFBackground: Metallic nanoparticles (NPs), in general, are able, due to the high surface area per unit volume, to absorb the maximum incoming light flux through the vicinity of plasmonic structures and then provide local heating. Thus, silver (Ag) NPs has been used to generate heat and increase the temperature of water from solar radiation energy. The optimal plasmonic heating generation can be obtained as soon as the wavelength of the light source is close to the plasmonic resonance wavelength of Ag NPs.
View Article and Find Full Text PDFThe usage of the green synthesis method to produce nanoparticles (NPs) has received great acceptance among the scientific community in recent years. This, perhaps, is owing to its eco-friendliness and the utilization of non-toxic materials during the synthesizing process. The green synthesis approach also supplies a reducing and a capping agent, which increases the stability of the NPs through the available phytochemicals in the plant extractions.
View Article and Find Full Text PDFIn recent years, nanotechnology has become one of the most important and exciting avant-gardes, without exception, in all fields of science. Through nanotechnology, novel materials and devices can be industrialized with atomic precision. In general, there are three main methods for synthesizing NPs: Chemical, physical and biological, or green methods.
View Article and Find Full Text PDFSilver (Ag) nanoparticles (NPs) have been synthesized through an easy, inexpensive, and ecofriendly method. , parsley, leaf extract was utilized as a reducing, capping, and stabilizing agent, without using any hazardous chemical materials, for producing Ag NPs. The biosynthesized Ag NPs were characterized using different characterization techniques, namely UV-Vis, FT-IR spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), dynamic light scattering (DLS), zeta potential, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), transmission electron microscope (TEM), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) analysis to investigate the optical, thermal, structural, morphological, and chemical properties of the plant extract and the biosynthesized Ag NPs.
View Article and Find Full Text PDFUltraviolet (UV) photodetectors (PDs) based on high-quality well-aligned ZnO nanorods (NRs) were fabricated using both modified and conventional chemical bath deposition (CBD) methods. The modified chemical bath deposition (M-CBD) method was made by adding air bubbles to the growth solution during the CBD process. The viability and effectiveness of M-CBD were examined by developing UV PDs based on ZnO NRs.
View Article and Find Full Text PDFAim: The study aimed at synthesizing ZnO NPs using Petroselinum crispum extract, commonly known as parsley, as a source of biosynthesis without utilizing chemical agents for reducing, capping and stabilizing agent.
Background: Recently, the biosynthesis of nanoparticles has been widely explored due to the wide range of vital applications in nanotechnology. Biosynthesized zinc oxide nanoparticles, ZnO NPs, have become increasingly important since they have many applications and are environmentally friendly.