Publications by authors named "Azcon R"

Salinity is a widespread abiotic stress, which has strong adverse effects on plant growth and crop productivity. Exopolysaccharides (EPS) play a crucial role in plant growth-promoting rhizobacteria (PGPR)-mediated improvement of plant stress tolerance. This study aimed to assess whether sp.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacteria (PGPR) are considered as bio-ameliorators that confer better salt resistance to host plants while improving soil biological activity. Despite their importance, data about the likely synergisms between PGPR and halophytes in their native environments are scarce. The objective of this study was to assess the effect of PGPR ( sp.

View Article and Find Full Text PDF

Background: New evidence has shown that arbuscular mycorrhizal (AM) fungi can contribute to the aluminum (Al ) tolerance of host plants growing in acidic soils with phytotoxic levels of Al . The aim of this study was to investigate the role of AM fungi isolated from naturally occurring Al acidic soils in conferring host tolerance to Al toxicity in three wheat cultivars differing in Al sensitivity. The experiment was conducted in a soilless substrate (vermiculite/perlite, 2:1 v/v) using two Al -tolerant wheat genotypes and one Al -sensitive wheat genotype.

View Article and Find Full Text PDF

Olive trees are known for their capacity to adapt to drought through several phenotypic and molecular variations, although this can vary according to the different provenances of the same olive cultivar. We confronted the same olive cultivar from two different location in Spain: Freila, in the Granada province, with low annual precipitation, and Grazalema, in the Cadiz province, with high annual precipitation, and subjected them to five weeks of severe drought stress. We found distinctive physiological and developmental adaptations among the two provenances.

View Article and Find Full Text PDF

Rhizobial symbiosis improved the water status of bean plants under salinity-stress conditions, in part by increasing their osmotic root water flow. One of the main problems for agriculture worldwide is the increasing salinization of farming lands. The use of soil beneficial microorganisms stands up as a way to tackle this problem.

View Article and Find Full Text PDF

Inoculation of plants with beneficial plant growth-promoting bacteria (PGPB) emerges a valuable strategy for ecosystem recovery. However, drought conditions might compromise plant-microbe interactions especially in semiarid regions. This study highlights the effect of native PGPB after 1 year inoculation on autochthonous shrubs growth and rhizosphere microbial community composition and activity under drought stress conditions.

View Article and Find Full Text PDF

The adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations.

View Article and Find Full Text PDF

Bacteria (Pseudomonas sp. and Bacillus sp.) and/or the arbuscular mycorrhizal (AM) fungus Rhizophagus intraradices were able to improve growth, physiological and biochemical characteristics of four Sulla carnosa Desf.

View Article and Find Full Text PDF

Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity.

View Article and Find Full Text PDF

This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B.

View Article and Find Full Text PDF

The recovery of species composition and functions of soil microbial community of degraded lands is crucial in order to guarantee the long-term self-sustainability of the ecosystems. A field experiment was carried out to test the influence of combining fermented sugar beet residue (SBR) addition and inoculation with the arbuscular mycorrhizal (AM) fungus Funneliformis mosseae on the plant growth parameters and microbial community composition and function in the rhizosphere of two autochthonous plant species (Dorycnium pentaphyllum L. and Asteriscus maritimus L.

View Article and Find Full Text PDF

Studies have shown that some microorganisms autochthonous from stressful environments are beneficial when used with autochthonous plants, but these microorganisms rarely have been tested with allochthonous plants of agronomic interest. This study investigates the effectiveness of drought-adapted autochthonous microorganisms [Bacillus thuringiensis (Bt) and a consortium of arbuscular mycorrhizal (AM) fungi] from a degraded Mediterranean area to improve plant growth and physiology in Zea mays under drought stress. Maize plants were inoculated or not with B.

View Article and Find Full Text PDF

A field experiment was carried out to assess the effectiveness of combining mycorrhizal inoculation with a native AM fungus (Glomus sp.) and the addition of an urban organic waste compost (OWC) applied at two rates (0.5 and 2.

View Article and Find Full Text PDF

Autochthonous microorganisms [a consortium of arbuscular-mycorrhizal (AM) fungi and Bacillus thuringiensis (Bt)] were assayed and compared to Rhizophagus intraradices (Ri), Bacillus megaterium (Bm) or Pseudomonas putida (Psp) and non-inoculation on Trifolium repens in a natural arid soil under drought conditions. The autochthonous bacteria Bt and the allochthonous bacteria Psp increased nutrients and the relative water content and decreased stomatal conductance, electrolyte leakage, proline and APX activity, indicating their abilities to alleviate the drought stress. Mycorrhizal inoculation significantly enhanced plant growth, nutrient uptake and the relative water content, particularly when associated with specific bacteria minimizing drought stress-imposed effects.

View Article and Find Full Text PDF

The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (Bacillus megaterium, Enterobacter sp, Bacillus thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment.

View Article and Find Full Text PDF

The effectiveness of autochthonous plant growth-promoting rhizobacteria was studied in Lavandula dentata and Salvia officinalis growing in a natural arid Mediterranean soil under drought conditions. These bacteria identified as Bacillus megaterium (Bm), Enterobacter sp. (E), Bacillus thuringiensis (Bt), and Bacillus sp.

View Article and Find Full Text PDF

It is well known that the arbuscular mycorrhizal (AM) symbiosis helps the host plant to overcome several abiotic stresses including drought. One of the mechanisms for this drought tolerance enhancement is the higher water uptake capacity of the mycorrhizal plants. However, the effects of the AM symbiosis on processes regulating root hydraulic properties of the host plant, such as root hydraulic conductivity and plasma membrane aquaporin gene expression, and protein abundance, are not well defined.

View Article and Find Full Text PDF

Our aim was to examine the effect of water stress on plant growth and development of two native plant species (Tetraclinis articulata and Crithmum maritimum) and on microbial community composition and activity in the rhizosphere soil, following the addition of an organic amendment, namely sugar beet residue (SBR), and/or the inoculation with an arbuscular mycorrhizal (AM) fungus, namely Glomus mosseae, in a non-sterile heavy metal-polluted soil. The AM inoculation did not have any significant effect on plant growth of both species. In T.

View Article and Find Full Text PDF

This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense) growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v) as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L(-1) of Araxá apatite.

View Article and Find Full Text PDF

The response of rice plants to inoculation with an arbuscular mycorrhizal (AM) fungus, Azospirillum brasilense, or combination of both microorganisms, was assayed under well-watered or drought stress conditions. Water deficit treatment was imposed by reducing the amount of water added, but AM plants, with a significantly higher biomass, received the same amount of water as non-AM plants, with a poor biomass. Thus, the water stress treatment was more severe for AM plants than for non-AM plants.

View Article and Find Full Text PDF

The aim of this study was to assess the effectiveness of inoculation with a native arbuscular mycorrhizal (AM) fungus, Glomus mosseae (Nicol. and Gerd.) Gerd.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi and a residue from dry olive cake (DOC) supplemented with rock phosphate (RP) and treated with either Aspergillus niger (DOC-A) or Phanerochaete chrysosporium (DOC-P), were assayed in a natural, semi-arid soil using Trifolium repens or Dorycnium pentaphyllum plants. The effects of the AM fungi and/or DOC-A were compared with P-fertilisation (P) over eleven successive harvests to evaluate the persistence of the effectiveness of the treatments. The biomass of dually-treated plants after four successive harvests was greater than that obtained for non-treated plants or those receiving the AM inoculum or DOC-A treatments after eleven yields.

View Article and Find Full Text PDF

It is documented that some plant-growth-promoting rhizobacteria (PGPR) enhance plant salt tolerance. However, as to how PGPR may influence two crucial components of plant salt tolerance such as, root hydraulic characteristics and aquaporin regulation has been almost unexplored. Here, maize (Zea mays L.

View Article and Find Full Text PDF

The growth of legume plants is usually enhanced by the dual symbiosis of arbuscular mycorrhizal (AM) fungi and Rhizobium bacteria. However, most reports on this topic have been carried out under optimal water regime conditions. Here, four Phaseolus vulgaris varieties were single or dual inoculated with two different AM fungus and/or two different Rhizobium strains.

View Article and Find Full Text PDF

We investigated if the limited development of Trifolium repens growing in a heavy metal (HM) multicontaminated soil was increased by selected native microorganisms, bacteria (Bacillus cereus (Bc)), yeast (Candida parapsilosis (Cp)), or arbuscular mycorrhizal fungi (AMF), used either as single or dual inoculants. These microbial inoculants were assayed to ascertain whether the selection of HM-tolerant microorganisms can benefit plant growth and nutrient uptake and depress HM acquisition. The inoculated microorganisms, particularly in dual associations, increased plant biomass by 148% (Bc), 162%, (Cp), and 204% (AMF), concomitantly producing the highest symbiotic (AMF colonisation and nodulation) rates.

View Article and Find Full Text PDF