Publications by authors named "Azam Khalili"

The incremental least-mean-square (ILMS) algorithm is a useful method to perform distributed adaptation and learning in Hamiltonian networks. To implement the ILMS algorithm, each node needs to receive the local estimate of the previous node on the cycle path to update its own local estimate. However, in some practical situations, perfect data exchange may not be possible among the nodes.

View Article and Find Full Text PDF

Many problems in multiagent networks can be solved through distributed learning (state estimation) of linear dynamical systems. In this paper, we develop a partial-diffusion Kalman filtering (PDKF) algorithm, as a fully distributed solution for state estimation in the multiagent networks with limited communication resources. In the PDKF algorithm, every agent (node) is allowed to share only a subset of its intermediate estimate vectors with its neighbors at each iteration, reducing the amount of internode communications.

View Article and Find Full Text PDF

Demand side energy consumption scheduling is a well-known issue in the smart grid research area. However, there is lack of a comprehensive method to manage the demand side and consumer behavior in order to obtain an optimum solution. The method needs to address several aspects, including the scale-free requirement and distributed nature of the problem, consideration of renewable resources, allowing consumers to sell electricity back to the main grid, and adaptivity to a local change in the solution point.

View Article and Find Full Text PDF

In extracellular neural recording experiments, detecting neural spikes is an important step for reliable information decoding. A successful implementation in integrated circuits can achieve substantial data volume reduction, potentially enabling a wireless operation and closed-loop system. In this paper, we report a 16-channel neural spike detection chip based on a customized spike detection method named as exponential component-polynomial component (EC-PC) algorithm.

View Article and Find Full Text PDF

In this paper we propose an algorithm for distributed optimization in mobile nodes. Compared with many published works, an important consideration here is that the nodes do not know the cost function beforehand. Instead of decision-making based on linear combination of the neighbor estimates, the proposed algorithm relies on information-rich nodes that are iteratively identified.

View Article and Find Full Text PDF