The beating of cilia and flagella, which relies on an efficient conversion of energy from ATP-hydrolysis into mechanical work, offers a promising way to propel synthetic cargoes. Recent experimental realizations of such micro-swimmers, in which micron-sized beads are propelled by isolated and demembranated flagella from the green algae Chlamydomonas reinhardtii (C. reinhardtii), revealed a variety of propulsion modes, depending in particular on the calcium concentration.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
July 2022
In this work, the far-field propagation of multi-vortex beams is investigated. We consider diffraction of a Gaussian wave from a spatial light modulator (SLM) in which a multi-fork grating is implemented on it at the waist plane of the Gaussian wave. In the first-order diffraction pattern a multi-vortex beam is produced, and we consider its evolution under propagation when different multi-fork gratings are implemented on the SLM.
View Article and Find Full Text PDFBio-hybrid micro-swimmers, composed of biological entities integrated with synthetic constructs, actively transport cargo by converting chemical energy into mechanical work. Here, using isolated and demembranated flagella from green algae (), we build efficient axonemally-driven micro-swimmers that consume ATP to propel micron-sized beads. Depending on the calcium concentration, we observed two main classes of motion: whereas beads move along curved trajectories at calcium concentrations below 0.
View Article and Find Full Text PDFHigh speed volumetric optical microscopy is an important tool for observing rapid processes in living cells or for real-time tracking of sub-cellular components. However, the 3D imaging capability often comes at the price of a high technical complexity of the imaging system and/or the requirement of demanding image analysis. Here, we propose a combination of conventional phase-contrast imaging with a customized multi-plane beam-splitter for enabling simultaneous acquisition of images in eight different focal planes.
View Article and Find Full Text PDFArtificial systems capable of self-sustained movement with self-sufficient energy are of high interest with respect to the development of many challenging applications, including medical treatments, but also technical applications. The bottom-up assembly of such systems in the context of synthetic biology is still a challenging task. In this work, we demonstrate the biocompatibility and efficiency of an artificial light-driven energy module and a motility functional unit by integrating light-switchable photosynthetic vesicles with demembranated flagella.
View Article and Find Full Text PDFCilia-driven motility and fluid transport are ubiquitous in nature and essential for many biological processes, including swimming of eukaryotic unicellular organisms, mucus transport in airway apparatus or fluid flow in the brain. The-biflagellated micro-swimmer Chlamydomonas reinhardtii is a model organism to study the dynamics of flagellar synchronization. Hydrodynamic interactions, intracellular mechanical coupling or cell body rocking is believed to play a crucial role in the synchronization of flagellar beating in green algae.
View Article and Find Full Text PDFIn its natural habitat in the forest soil, the cellular slime mold is exposed to obstacles. Starving cells secrete cAMP, which is the key extracellular signaling molecule that promotes the aggregation process required for their long-term survival. Here, we investigated the influence of environmental inhomogeneities on the signaling and pattern formation of cells.
View Article and Find Full Text PDFBoundary-driven oscillations were numerically predicted to exist in a reaction-diffusion-advection system, namely in the signaling population of social amoeba D. discoideum. If deprived of nutrients, D.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe forces that arise from the actin cortex play a crucial role in determining the membrane deformation. These include protrusive forces due to actin polymerization, pulling forces due to transient attachment of actin filaments to the membrane, retrograde flow powered by contraction of actomyosin network, and adhesion to the extracellular matrix. Here we present a theoretical model for membrane deformation resulting from the feedback between the membrane shape and the forces acting on the membrane.
View Article and Find Full Text PDFDictyostelium discoideum (D.d.) is a widely studied amoeba due to its capabilities of development, survival, and self-organization.
View Article and Find Full Text PDFWe report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction.
View Article and Find Full Text PDFIn a reaction-diffusion-advection system, with a convectively unstable regime, a perturbation creates a wave train that is advected downstream and eventually leaves the system. We show that the convective instability coexists with a local absolute instability when a fixed boundary condition upstream is imposed. This boundary induced instability acts as a continuous wave source, creating a local periodic excitation near the boundary, which initiates waves travelling both up and downstream.
View Article and Find Full Text PDFChemotaxis is a ubiquitous biological phenomenon in which cells detect a spatial gradient of chemoattractant, and then move towards the source. Here we present a position-dependent advection-diffusion model that quantitatively describes the statistical features of the chemotactic motion of the social amoeba Dictyostelium discoideum in a linear gradient of cAMP (cyclic adenosine monophosphate). We fit the model to experimental trajectories that are recorded in a microfluidic setup with stationary cAMP gradients and extract the diffusion and drift coefficients in the gradient direction.
View Article and Find Full Text PDFThe chemotactic motion of eukaryotic cells such as leukocytes or metastatic cancer cells relies on membrane protrusions driven by the polymerization and depolymerization of actin. Here we show that the response of the actin system to a receptor stimulus is subject to a threshold value that varies strongly from cell to cell. Above the threshold, we observe pronounced cell-to-cell variability in the response amplitude.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2008
Propulsion by actin polymerization is widely used in cell motility. Here, we investigate a model of the brush range of an actin gel close to a propelled object, describing the force generation and the dynamics of the propagation velocity. We find transitions between stable steady states and relaxation oscillations when the attachment rate of actin filaments to the obstacle is varied.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2006
The entropic force exerted by the Brownian fluctuations of a grafted semiflexible polymer upon a rigid smooth wall are calculated both analytically and by Monte Carlo simulations. Such forces are thought to play an important role for several cellular phenomena, in particular, the physics of actin-polymerization-driven cell motility and movement of bacteria like Listeria. In the stiff limit, where the persistence length of the polymer is larger than its contour length, we find that the entropic force shows scaling behavior.
View Article and Find Full Text PDFIn the present study, the effects of acute administration of nicotine, as well as nicotinic and muscarinic acetylcholine receptor antagonists, on the expression of morphine-induced conditioned place preference, have been investigated in male Swiss-Webster mice. Animals received different doses of morphine 5 days after surgical cannulation in the lateral ventricle. Subcutaneous injections of morphine (2-5 mg/kg) in mouse produced place preference in a dose-dependent manner.
View Article and Find Full Text PDFIn the present study, the effects of L-arginine, a nitric oxide (NO) precursor, and N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on apomorphine- or morphine-induced locomotor sensitization in male albino mice were investigated. Our data showed that subcutaneous (s.c.
View Article and Find Full Text PDFIn the present study, the effects of intra-ventral tegmental area injection of L-arginine, a nitric oxide (NO) precursor, and N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on morphine-induced conditioned place preference in male Wistar rats were investigated. Our data showed that subcutaneous (s.c.
View Article and Find Full Text PDFIn the present study, the effects of intra-nucleus accumbens injection of L-arginine, a nitric oxide (NO) precursor, and N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on morphine-induced conditioned place preference in male Wistar rats were investigated. Our data showed that subcutaneous (s.c.
View Article and Find Full Text PDF