Publications by authors named "Azadeh Yazdanpanah"

Pathology Image Informatics Platform (PIIP) is an NCI/NIH sponsored project intended for managing, annotating, sharing, and quantitatively analyzing digital pathology imaging data. It expands on an existing, freely available pathology image viewer, Sedeen. The goal of this project is to develop and embed some commonly used image analysis applications into the Sedeen viewer to create a freely available resource for the digital pathology and cancer research communities.

View Article and Find Full Text PDF

Patients with chronic obstructive pulmonary disease (COPD) often exhibit skeletal muscle weakness in lower limbs. Analysis of the shapes and sizes of these muscles can lead to more effective therapy. Unfortunately, segmenting these muscles from one another is a challenging task due to a lack of image information in many areas.

View Article and Find Full Text PDF

Rodent models of retinal degenerative diseases are used by vision scientists to develop therapies and to understand mechanisms of disease progression. Measurement of changes to the thickness of the various retinal layers provides an objective metric to evaluate the performance of the therapy. Because invasive histology is terminal and provides only a single data point, non-invasive imaging modalities are required to better study progression, and to reduce the number of animals used in research.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is a noninvasive, depth-resolved imaging modality that has become a prominent ophthalmic diagnostic technique. We present a semi-automated segmentation algorithm to detect intra-retinal layers in OCT images acquired from rodent models of retinal degeneration. We adapt Chan-Vese's energy-minimizing active contours without edges for the OCT images, which suffer from low contrast and are highly corrupted by noise.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is a non-invasive, depth resolved imaging modality that has become a prominent ophthalmic diagnostic technique. We present an automatic segmentation algorithm to detect intra-retinal layers in OCT images acquired from rodent models of retinal degeneration. We adapt Chan-Vese's energy-minimizing active contours without edges for OCT images, which suffer from low contrast and are highly corrupted by noise.

View Article and Find Full Text PDF