In this study, cellulose nanocrystals (CNCs) were synthesized from celery stalks to be used as the platform for quercetin delivery. Additionally, CNCs and CNCs-quercetin were characterized using the results of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential, while their interactions with human holo-transferrin (HTF) were also investigated. We examined their interaction under physiological conditions through the exertion of fluorescence, resonance light scattering, synchronized fluorescence spectroscopy, circular dichroism, three-dimensional fluorescence spectroscopy, and fluorescence resonance energy transfer techniques.
View Article and Find Full Text PDFThe aim of this study was to investigate the behavior interaction of α-Casein-B and β-Casein-B complexes as binary systems through the methods of multiple spectroscopic, zeta potential, calorimetric, and molecular dynamics (MD) simulation. Fluorescence spectroscopy denoted the role ofBas a quencher in both cases of α-Casein and β-Casein fluorescence intensities, which also verifies the existence of interactions. The quenching constants of α-Casein-B and β-Casein-B complexes at 298 K in the first set of binding sites were 2.
View Article and Find Full Text PDFJ Fluoresc
July 2023
The interaction of Rebeccamycin with calf thymus (ctDNA) in the absence and presence of H1 was investigated by molecular dynamics, multi-spectroscopic, and cellular techniques. According to fluorescence and circular dichroism spectroscopies, Rebeccamycin interacted with ctDNA in the absence of H1 through intercalator or binding modes, while the presence of H1 resulted in revealing theintercalator, as the dominant role, and groove binding modes of ctDNA-Rebeccamycin complex. The binding constants, which were calculated to be 1.
View Article and Find Full Text PDF