Purpose: There is growing concern that male reproduction is affected by environmental chemicals. One way to determine the adverse effect of environmental pollutants is to use wild animals as monitors and evaluate testicular toxicity using histopathology. We propose an automated method to process histology images of testicular tissue.
View Article and Find Full Text PDFPurpose: There is growing concern that male reproduction is affected by environmental chemicals. One way to determine the adverse effect of environmental pollutants is to use wild animals as monitors and evaluate testicular toxicity using histopathology. We propose an automated method to process histology images of testicular tissue.
View Article and Find Full Text PDFBisphenol A (BPA), an endocrine-disrupting chemical and environmental pollutant, has been reported by many researchers to induce male reproductive toxicity in different experimental models. In this study, we investigated whether long-term exposure for two months to 25 µg/kg body weight (low dose) of BPA affects spermatogenesis or sperm quality in young Istrian Pramenka rams exposed via diet. We evaluated body and testicular weights, histopathology of testes and epididymides, and sperm analyses, and compared these parameters between the group of treated rams and the control group of rams.
View Article and Find Full Text PDFPersistent organic pollutants (POPs) are found in high concentrations in the Artic. Polar bears (Ursus maritimus) are one of the most exposed mammals in the Arctic and are thereby vulnerable to reproductive disruption. The aim of this study was to investigate male polar bear reproduction based on a detailed evaluation of testis histology and to assess possible effects of environmental chemicals on male polar bear reproduction.
View Article and Find Full Text PDFHistopathology of testicular tissue is considered to be the most sensitive tool to detect adverse effects on male reproduction. When assessing tissue damage, seminiferous epithelium needs to be classified into different stages to detect certain cell damages; but stage identification is a demanding task. The authors present a method to identify the 12 stages in mink testicular tissue.
View Article and Find Full Text PDFWhile novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming.
View Article and Find Full Text PDFThere is growing interest in using wild animals to monitor the real-life cocktail effect of environmental chemicals on male reproduction. However, practical difficulties, such as long distances to the laboratory, generally prolong the time between euthanisation and specimen handling. For instance, tissue fixation is often performed on frozen material or on material where deterioration has started, which may affect tissue morphology.
View Article and Find Full Text PDF