Publications by authors named "Azade Geranurimi"

As a key cytokine mediator of inflammation, interleukin-1β (IL-1β) binds to the IL-1 receptor (IL-1R) and activates various downstream signaling mediators, including NF-κB, which is required for immune vigilance and cellular protection. Toward the development of IL-1-targeting therapeutics which exhibit functional selectivity, the all-D-amino acid peptide (101.10, H-D-Arg-D-Tyr-D-Thr-D-Val-D-Glu-D-Leu-D-Ala-NH) was conceived as an allosteric IL-1R modulator that conserves NF-κB signaling while inhibiting other IL-1-activated pathways.

View Article and Find Full Text PDF

Interleukin-1β (IL-1β) binds to the IL-1 receptor (IL-1R) and is a key cytokine mediator of inflammasome activation. IL-1β signaling leads to parturition in preterm birth (PTB) and contributes to the retinal vaso-obliteration characteristic of oxygen-induced retinopathy (OIR) of premature infants. Therapeutics targeting IL-1β and IL-1R are approved to treat rheumatoid arthritis; however, all are large proteins with clinical limitations including immunosuppression, due in part to inhibition of NF-κB signaling, which is required for immuno-vigilance and cytoprotection.

View Article and Find Full Text PDF

γ,δ-Unsaturated ketones, so-called homoallylic ketones, have served as versatile building blocks for the synthesis of a variety of heterocycles, carbocycles, natural products, and reactive intermediates. Procured by a variety of processes, including conjugate addition of vinyl organometallic reagents to unsaturated ketones, allylation of silyl enol ethers, and rearrangements, homoallylic ketones are often synthesized by step-intensive methods. The cascade addition of 2 equiv of vinyl Grignard reagent to a carboxylate was reported by the Lubell laboratory in 2003 to give effective access to homoallylic ketones from a variety of aromatic, aliphatic, and α-amino methyl esters.

View Article and Find Full Text PDF

α- N-(Fmoc)Amino-γ-lactam dipeptides with a variety of β-substituents were synthesized stereoselectively with minimal β-elimination by routes employing, respectively, Mitsunobu chemistry and cyclic sulfamidate nucleophilic ring opening from trans- and cis-β-hydroxy-α-amino-γ-lactam precursors. This diversity-oriented method provides stereochemically pure dipeptide mimics bearing Cys, Ser, Thr, Dap, Dab, His, and other amino acid residues with constrained backbone and side chain conformations.

View Article and Find Full Text PDF