Publications by authors named "Azad Kumar"

The COVID-19 pandemic underscores the need to prepare for future emerging coronavriuses (CoVs) by understanding the principles behind effective CoV vaccine design such as protective immunity and antibody responses. To study which epitopes and subdomains contribute to protection, we utilized the prefusion-stabilized spike protein of MERS-CoV, MERS S-2P, as a vaccine immunogen. Vaccination with MERS S-2P elicited both receptor-binding domain (RBD)- and non-RBD-specific antibodies, including N-terminal domain (NTD)-specific G2-and CDC2-A2-like antibodies.

View Article and Find Full Text PDF

Background: Humoral immune response against the pre-fusion (pre-F) conformation of respiratory syncytial virus (RSV) F protein has been proposed to play a protective role against infection. An RSV pre-F maternal vaccine has been recently approved in several countries to protect young infants against RSV. We aimed to assess serum IgG titers against the pre-F and post-F conformations of RSV F protein and their association with life-threatening RSV disease (LTD) in previously healthy infants.

View Article and Find Full Text PDF

Nanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells.

View Article and Find Full Text PDF

Nowadays, fast-growing industrialization has resulted in the release of enormous amounts of contaminants such as toxic dyes into water bodies and leading to cause health and environmental risks. In this regard, we prepared inorganic nanocomposites for the treatment of toxic dyes. Hence, we synthesized TiO/PAni/GO nanocomposites and examined them by using XRD, SEM, TEM, UV-Vis spectroscopy, BET analysis, and a photoluminescence investigation.

View Article and Find Full Text PDF

Respiratory syncytial virus is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of Th 1 immunity. Here we show application of cationic adjuvant formulation CAF08, a liposomal vaccine formulation tailored to induce Th 1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. We apply quantitative phosphoproteomics to human dendritic cells and reveal a role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identify signaling events resulting in antigen cross-presentation.

View Article and Find Full Text PDF

Background: Multiple active vaccination approaches have proven ineffective in reducing the substantial morbidity and mortality caused by respiratory syncytial virus (RSV) in infants and older adults (aged ≥65 years). A vaccine conferring a substantial and sustainable boost in neutralising activity is required to protect against severe RSV disease. To that end, we evaluated the safety and immunogenicity of DS-Cav1, a prefusion F subunit vaccine.

View Article and Find Full Text PDF

Technologies that define the atomic-level structure of neutralization-sensitive epitopes on viral surface proteins are transforming vaccinology and guiding new vaccine development approaches. Previously, iterative rounds of protein engineering were performed to preserve the prefusion conformation of the respiratory syncytial virus (RSV) fusion (F) glycoprotein, resulting in a stabilized subunit vaccine candidate (DS-Cav1), which showed promising results in mice and macaques. Here, phase I human immunogenicity data reveal a more than 10-fold boost in neutralizing activity in serum from antibodies targeting prefusion-specific surfaces of RSV F.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in children and older adults. An effective vaccine must elicit neutralizing antibodies targeting the RSV fusion (F) protein, which exists in two major conformations, pre-fusion (pre-F) and post-fusion (post-F). Although 50% of the surface is shared, pre-F contains highly neutralization-sensitive antigenic sites not present on post-F.

View Article and Find Full Text PDF

Background: Transplacental respiratory syncytial virus (RSV) antibody transfer has been characterized, but little is known about the protective effect of breast milk RSV-specific antibodies. Serum antibodies against the prefusion RSV fusion protein (pre-F) exhibit high neutralizing activity. We investigate protection of breast milk pre-F antibodies against RSV acute respiratory infection (ARI).

View Article and Find Full Text PDF

A licensed vaccine for respiratory syncytial virus (RSV) is unavailable, and passive prophylaxis with the antibody palivizumab is restricted to high-risk infants. Recently isolated antibodies 5C4 and D25 are substantially more potent than palivizumab, and a derivative of D25 is in clinical trials. Here we show that unlike D25, 5C4 preferentially neutralizes subtype A viruses.

View Article and Find Full Text PDF

Appropriate adjuvant selection may be essential to optimize the potency and to tailor the immune response of subunit vaccines. To induce protective responses against respiratory syncytial virus (RSV)-a highly prevalent childhood pathogen without a licensed vaccine-we previously engineered a pre-fusion-stabilized trimeric RSV F (pre-F) "DS-Cav1" immunogen, which induced high titer RSV-neutralizing antibodies, in mice and non-human primates, when formulated with adjuvants Poly (I:C) and Poly (IC:LC), respectively. To assess the impact of different adjuvants, here we formulated RSV F DS-Cav1 with multiple adjuvants and assessed immune responses.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are found in many cancer types, including breast carcinoma. Breast cancer stem cells (BCSCs) are considered as seed of cancer formation and they are associated with metastasis and genotoxic drug resistance. Several studies highlighted the presence of BCSCs in tumor microenvironment and they are accentuated with several carcinoma events including metastasis and resistance to genotoxic drugs and they also rebound after genotoxic burn.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory.

View Article and Find Full Text PDF

In the last decade, implications of human telomerase reverse transcriptase (hTERT), a component of ribonucleoprotein telomerase in aging, senescence, and stem cell are highly evident. Besides, the activation of hTERT is also being documented several cancer types including carcinoma. The awakening of telomerase during carcinoma initiation and development is being seen with different perspectives including genetic and epigenetic tools and events.

View Article and Find Full Text PDF

Breast carcinoma is a heterogeneous disease that has exhibited rapid resistance to treatment in the last decade. Depending genotype and phenotype of breast cancer, there are discernible differences in DNA repair protein responses including DNA double strand break repair. It is a fact that different molecular sub-types of breast carcinoma activate these dedicated protein pathways in a distinct manner.

View Article and Find Full Text PDF

Unlabelled: Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B.

View Article and Find Full Text PDF

Breast cancer among women is one of the most common carcinomas worldwide. Compared to developed countries, the breast cancer cases reported in India have boosted rapidly. At the same time, alarming statistics show that ratio of mortality cases over the total incidences is significantly high in comparison to developed world (Global Heath Estimates, WHO 2015).

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is estimated to claim more lives among infants <1 year old than any other single pathogen, except malaria, and poses a substantial global health burden. Viral entry is mediated by a type I fusion glycoprotein (F) that transitions from a metastable prefusion (pre-F) to a stable postfusion (post-F) trimer. A highly neutralization-sensitive epitope, antigenic site Ø, is found only on pre-F.

View Article and Find Full Text PDF

Prevention efforts for respiratory syncytial virus (RSV) have been advanced due to the recent isolation and characterization of antibodies that specifically recognize the prefusion conformation of the RSV fusion (F) glycoprotein. These potently neutralizing antibodies are in clinical development for passive prophylaxis and have also aided the design of vaccine antigens that display prefusion-specific epitopes. To date, prefusion-specific antibodies have been shown to target two antigenic sites on RSV F, but both of these sites are also present on monomeric forms of F.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of hospitalization for children under 5 years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site Ø, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site Ø when exposed to extremes of pH, osmolality, and temperature.

View Article and Find Full Text PDF

The prefusion state of respiratory syncytial virus (RSV) fusion (F) glycoprotein is the target of most RSV-neutralizing activity in human sera, but its metastability has hindered characterization. To overcome this obstacle, we identified prefusion-specific antibodies that were substantially more potent than the prophylactic antibody palivizumab. The cocrystal structure for one of these antibodies, D25, in complex with the F glycoprotein revealed D25 to lock F in its prefusion state by binding to a quaternary epitope at the trimer apex.

View Article and Find Full Text PDF

Previous studies have suggested that there are genes whose expression levels are associated with chronological age. However, which genes show consistent age association across studies, and which are specific to a given organism or tissue remains unresolved. Here, we reassessed this question using 2 independently ascertained series of human brain samples from 2 anatomic regions, the frontal lobe of the cerebral cortex and cerebellum.

View Article and Find Full Text PDF

Background: Interpreting gene expression profiles obtained from heterogeneous samples can be difficult because bulk gene expression measures are not resolved to individual cell populations. We have recently devised Population-Specific Expression Analysis (PSEA), a statistical method that identifies individual cell types expressing genes of interest and achieves quantitative estimates of cell type-specific expression levels. This procedure makes use of marker gene expression and circumvents the need for additional experimental information like tissue composition.

View Article and Find Full Text PDF

Parkinson disease is a common and usually sporadic neurodegenerative disorder. However, a subset of cases are inherited and, of these, mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most frequent genetic cause of disease. Here, we will discuss recent progress in understanding how LRRK2 mutations lead to disease and how this might have therapeutic implications.

View Article and Find Full Text PDF

Proteins mediating the transport of solutes across the cell membrane control the intracellular conditions in which life can occur. Because of the particular arrangement of spanning a lipid bilayer and the many conformations required for their function, transport proteins pose significant obstacles for the investigation of their structure-function relation. Crystallographic studies, if available, define the transmembrane segments in a "frozen" state and do not provide information on the dynamics of the extramembranous loops, which are similarly evolutionary conserved and thus as functionally important as the other parts of the protein.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmd76a6vrh5kkgh1btbiums2sq65tgmr1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once