Fluid loss is a well-known challenge of drilling operations. In this work, a novel sustainable starch-lignin-based polymer was synthesized for possible use in drilling fluid applications. The X-ray photoelectron spectroscopy (XPS) analysis confirmed that kraft lignin was crosslinked with starch via ether covalent bonds.
View Article and Find Full Text PDFBiomacromolecules
March 2023
This paper reports the polymerization of tall oil lignin (TOL), starch, and 2-methyl-2-propene-1-sulfonic acid sodium salt (MPSA), a sulfonate-containing monomer, in a three-component system to generate flocculants for colloidal systems. By utilizing the advanced H, COSY, HSQC, HSQC-TOCSY, and HMBC NMR techniques, it was confirmed that the phenolic substructures of TOL and the anhydroglucose unit of starch were covalently polymerized by the monomer to generate the three-block copolymer. The molecular weight, radius of gyration, and shape factor of the copolymers were fundamentally correlated to the structure of lignin and starch, as well as the polymerization outcomes.
View Article and Find Full Text PDFLignin is an abundant phenolic polymer produced vastly in pulping processes that could be further valorized. In this work, anionic (AKLs) and cationic (CKLs) lignin-based polymers were made by polymerizing kraft lignin (KL) with acrylic acid (AA) or [2-(methacryloyloxy) ethyl] trimethyl-ammonium chloride (METAC), respectively. In the polymerization reactions, various molar ratios of AA or METAC to KL were applied to produce AKLs and CKLs with different characteristics.
View Article and Find Full Text PDF