Eur Phys J E Soft Matter
July 2023
A hybrid data-driven/finite volume method for 2D and 3D thermal convective flows is introduced. The approach relies on a single-step loss, convolutional neural network that is active only in the near-wall region of the flow. We demonstrate that the method significantly reduces errors in the prediction of the heat flux over the long-time horizon and increases pointwise accuracy in coarse simulations, when compared to direct computations on the same grids with and without a traditional subgrid model.
View Article and Find Full Text PDFNumerical simulation of fluids plays an essential role in modeling many physical phenomena, such as weather, climate, aerodynamics, and plasma physics. Fluids are well described by the Navier-Stokes equations, but solving these equations at scale remains daunting, limited by the computational cost of resolving the smallest spatiotemporal features. This leads to unfavorable trade-offs between accuracy and tractability.
View Article and Find Full Text PDF