Chronic wounds, defined by their prolonged healing process, significantly impair patient quality of life and impose a hefty financial burden on healthcare systems worldwide. Sex/gender-specific mechanisms regulate inflammation and infection, angiogenesis, matrix synthesis, and cell recruitment contribute to cutaneous wound healing, but remain largely understudied. This review is aimed to spotlight the innovative realm of bioengineering and nanomedicine, which is at the helm of revolutionizing complex chronic wound care.
View Article and Find Full Text PDFNanomaterials (NMs) are now gaining popularity to be used in agriculture as fertilisers to reduce the dose of conventional fertilisers and enhance nutrient use efficiency. Urea has found its application as a conventional nitrogenous fertiliser since long, however, the nutrient use efficiency of the bulk form of urea is low due to issues related to ammonia volatilisation. This study proposes a biogenic synthesis route to develop urea nanoparticles that can be used as nano-fertiliser for better uptake and hence improved nutrient efficiency.
View Article and Find Full Text PDFNanoformulations of Phosphorous (P) have recently been proposed as alternatives to P fertilizers. In this study, the fertilizing efficacies of P-based nanomaterials (NMs), nanohydroxyapatite (nHAP) and nanophosphorus (nP), were examined on (Pusa Rohini, Indian tomato) in growth room pot experiments. These NMs differed in their mode of synthesis, chemical composition, size and shape.
View Article and Find Full Text PDFNanoscale phosphorus (P)-based formulations are being investigated as potentially new fertilizers to overcome the challenges of conventional bulk P fertilizers in agriculture, including low efficacy rates and high application levels. After agricultural applications, the NMs may be released into aquatic environments and transform over time (by aging) or in the presence of abiotic factors such as natural organic matter or sunlight exposure. It is, therefore, important to investigate the physicochemical changes of NMs in environmentally realistic conditions and assess their potential acute and sublethal toxic effects on aquatic organisms.
View Article and Find Full Text PDFBiogenic phosphorus (P) based - nanomaterials (NMs) are currently being explored as nanofertilizers. In this study, the acute toxic effects and trophic transfer of multiple types of P-based NMs were examined on soil-dwelling nematode, Caenorhabditis elegans. The study involved four variants of nanohydroxyapatites (nHAPs) synthesized either via a biogenic or a chemical route and another NM, nanophosphorus (nP), biosynthesized from bulk rock phosphate (RP).
View Article and Find Full Text PDFDesign and development of biocompatible, biodegradable and stable dual delivery systems for drug and gene is the need of the hour. Here, we have designed a strategy to develop carrier systems consisting of above mentioned properties by (a) incorporating an unnatural amino acid in the peptide backbone, and b) conjugating a low molecular weight cationic polymer (polyethylenimine, PEI) for incorporating cationic charge. Using this strategy, we have synthesized a small series of Boc-FΔF-AH-polyethylenimine conjugates by varying the concentration of Boc-FΔF-aminohexanoic acid, viz.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2020
Development of nanoparticle- and self-assembled nanomaterial-based therapeutics has become a rapidly growing area in the field of nanotechnology. One of the natural compounds, dopamine, presents as a neurotransmitter in the human brain serving as a messenger and deals with the behavioural responses, has provided an ideal platform through self-polymerization under aerobic conditions leading to the formation of a beneficial organic biopolymer, polydopamine (PDA). This polymer provides sufficient reactive functionalities, which can further be use to attach amine- or thiol-containing ligands to obtain conjugates.
View Article and Find Full Text PDFThe study describes a novel and environment friendly route of biosynthesis of nanohydroxyapatite (nHAP). Bacillus licheniformis mediated synthesis of nHAP has been carried out with different phosphate concentrations (2%, 5%, 10% and 20% w/v) of potassium dihydrogen orthophosphate monobasic (KHPO). The synthesis is supported by a two-step mechanism - (i) solubilization of P by organic acids extracellularly secreted by the bacterial strain and (ii) gelation of P and Ca.
View Article and Find Full Text PDFBackground: Intracellular iron involves in Fenton's reaction-mediated Hydroxyl radical (OH·) generation by reacting with the neurotoxic agent 6-Hydroxydopamine (6-OHDA) autoxidation derivative Hydrogen Peroxide (HO). Several studies have been conducted so far on the neuroprotective activities of the iron chelator Deferoxamine (DFO) but little or no clear evidence about the underlying cellular mechanism is available.
Methods: The present study was conducted on Human neuroblastoma cell line SH-SY5Y in the absence or presence of 6-OHDA or HO and / or DFO.
Front Endocrinol (Lausanne)
November 2018
Nanotechnology has enabled the development of innovative technologies and products for several industrial sectors. Their unique physicochemical and size-dependent properties make the engineered nanomaterials (ENMs) superior for devising solutions for various research and development sectors, which are otherwise unachievable by their bulk forms. However, the remarkable advantages mediated by ENMs and their applications have also raised concerns regarding their possible toxicological impacts on human health.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2018
Efficient delivery of DNA to cells is the primary concern to address the objective of gene therapy. Many attempts have been made to develop polymeric carriers for gene delivery. To have an efficient carrier, it is vital to understand the properties of the vector for better stability, transfection efficiency and minimal toxicity.
View Article and Find Full Text PDFMolecular self-assembly of biodegradable amphiphilic polymers allows rational design of biocompatible nanomaterials for drug delivery. Use of substituted polysaccharides for such applications offers the ease of design and synthesis, and provides higher biofunctionality and biocompatibility to nanomaterials. The present work focuses on the synthesis, characterization and potential biomedical applications of self-assembled polysaccharide-based materials.
View Article and Find Full Text PDF