Metabolomics is a powerful tool for uncovering biochemical diversity in a wide range of organisms. Metabolic network modeling is commonly used to frame metabolomics data in the context of a broader biological system. However, network modeling of poorly characterized nonmodel organisms remains challenging due to gene homology mismatches which lead to network architecture errors.
View Article and Find Full Text PDFMetabolomics is a powerful tool for uncovering biochemical diversity in a wide range of organisms, and metabolic network modeling is commonly used to frame results in the context of a broader homeostatic system. However, network modeling of poorly characterized, non-model organisms remains challenging due to gene homology mismatches. To address this challenge, we developed Metabolic Interactive Nodular Network for Omics (MINNO), a web-based mapping tool that takes in empirical metabolomics data to refine metabolic networks for both model and unusual organisms.
View Article and Find Full Text PDFWithin the classical eye-blink conditioning, Purkinje cells within the cerebellum are known to suppress their tonic firing rates for a well defined time period in response to the conditional stimulus after training. The temporal profile of the drop in tonic firing rate, i.e.
View Article and Find Full Text PDF