Electric field-assisted CO capture using solid adsorbents based on basic oxides can immensely reduce the required energy consumption compared to the conventional processes of temperature or pressure swing adsorption. In this work, we present first-principles density functional theoretical calculations to investigate the effects of an applied external electric field (AEEF) within the range from -1 to 1 V Å on the CO adsorption behavior on various high and low-index facets of MgO. When CO is strongly adsorbed on MgO surfaces to form carbonate species, the coupling of electric fields with the resulting intrinsic dipole moment induces a 'switch' from a strongly chemisorbed state to a weakly chemisorbed or physisorbed state at a critical value of AEEF.
View Article and Find Full Text PDFIn this combined experimental and theoretical study, a computational protocol is reported to predict the excited states in D-π-A compounds containing the B(Xyl) (Xyl = 2,6-bis(trifluoromethyl)phenyl) acceptor group for the design of new thermally activated delayed fluorescence (TADF) emitters. To this end, the effect of different donor and π-bridge moieties on the energy gaps between local and charge-transfer singlet and triplet states is examined. To prove this computationally aided design concept, the D-π-B(Xyl) compounds - were synthesized and fully characterized.
View Article and Find Full Text PDFWe have evaluated the performance of various density functionals, covering generalized gradient approximation (GGA), global hybrid (GH) and range-separated hybrid (RSH), using time dependent density functional theory (TDDFT) for computing vertical excitation energies against experimental absorption maximum (λ ) for a set of 10 different core-substituted naphthalene diimides (cNDI) recorded in dichloromethane. The computed excitation in case of GH PBE0 is most accurate while the trend is most systematic with RSH LCY-BLYP compared to λ . We highlight the importance of including solvent effects for optimal agreement with the λ .
View Article and Find Full Text PDFIt is shown, quantum chemically, how structural distortion of an aromatic dye molecule can be leveraged to rationally tune its optoelectronic properties. By using a quantitative Kohn-Sham molecular orbital (KS-MO) approach, in combination with time-dependent DFT (TD-DFT), the influence of various structural and electronic tuning parameters on the HOMO-LUMO gap of a benzenoid model dye have been investigated. These parameters include 1) out-of-plane bending of the aromatic core, 2) bending of the bridge with respect to the core, 3) the nature of the bridge itself, and 4) π-π stacking.
View Article and Find Full Text PDFThe unusually fast Diels-Alder reactions of [5]cyclophanes were analyzed by DFT at the BLYP-D3(BJ)/TZ2P level of theory. The computations were guided by an integrated activation-strain and Kohn-Sham molecular orbital analysis. It is revealed why both [5]metacyclophane and [5]paracyclophane exhibit a significant rate enhancement compared to their planar benzene analogue.
View Article and Find Full Text PDFThe reactivities of 2-butyne, cycloheptyne, cyclooctyne, and cyclononyne in the 1,3-dipolar cycloaddition reaction with methyl azide were evaluated through DFT calculations at the M06-2X/6-311++G(d)//M06-2X/6-31+G(d) level of theory. Computed activation free energies for the cycloadditions of cycloalkynes are 16.5-22.
View Article and Find Full Text PDFPrinciples are presented for the design of functional near-infrared (NIR) organic dye molecules composed of simple donor (D), spacer (π), and acceptor (A) building blocks in a D-π-A fashion. Quantitative Kohn-Sham molecular orbital analysis enables accurate fine-tuning of the electronic properties of the π-conjugated aromatic cores by effecting their size, including silaaromatics, adding donor and acceptor substituents, and manipulating the D-π-A torsional angle. The trends in HOMO-LUMO gaps of the model dyes correlate with the excitation energies computed with time-dependent density functional theory at CAMY-B3LYP.
View Article and Find Full Text PDF