Publications by authors named "Ayumu Yamashita"

Article Synopsis
  • Autism spectrum disorder (ASD) is a complex lifelong condition, and this study aimed to create a classifier using resting-state fMRI from a large group of 730 Japanese adults to identify its neural and biological features.
  • The developed classifier showed effectiveness in differentiating individuals with ASD from neurotypical controls across various countries, including the US and Belgium, and it also applied to children and adolescents.
  • Importantly, the study found that the classifier identified crucial functional connections related to social interaction difficulties and neurotransmitter activity, and it linked ASD with similar neurobiological factors seen in ADHD and schizophrenia, enhancing understanding of related mental health disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Neuroimaging databases for neuro-psychiatric disorders provide valuable data for researchers to explore diseases, develop machine learning models, and redefine understanding of these conditions.* ! -
  • A review identified 42 global MRI datasets totaling 23,293 samples from patients with various disorders, including mood, developmental, schizophrenia, Parkinson's, and dementia.* ! -
  • Improved governance and addressing technical issues of these databases are essential for sharing data across borders, aiding in understanding, diagnosing, and creating early interventions for neuro-psychiatric disorders.* !
View Article and Find Full Text PDF
Article Synopsis
  • * A study involving 730 Japanese adults aimed to develop a generalizable neuromarker for ASD, successfully identifying relevant functional connections that differentiate individuals with ASD from typically developing controls (TDCs).
  • * The research found that the developed neuromarker is applicable across various age groups and countries, while also indicating a biological connection between ASD and schizophrenia (SCZ), but less so with major depressive disorder (MDD).
View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological mechanisms remain elusive. The complexity of various factors, including inter-site and development-related differences, makes it challenging to develop generalizable neuroimaging-based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese adults to develop a generalizable neuromarker for ASD across independent sites (U.

View Article and Find Full Text PDF

Background And Hypothesis: Dynamics of the distributed sets of functionally synchronized brain regions, known as large-scale networks, are essential for the emotional state and cognitive processes. However, few studies were performed to elucidate the aberrant dynamics across the large-scale networks across multiple psychiatric disorders. In this paper, we aimed to investigate dynamic aspects of the aberrancy of the causal connections among the large-scale networks of the multiple psychiatric disorders.

View Article and Find Full Text PDF

Aim: Increasing evidence suggests that psychiatric disorders are linked to alterations in the mesocorticolimbic dopamine-related circuits. However, the common and disease-specific alterations remain to be examined in schizophrenia (SCZ), major depressive disorder (MDD), and autism spectrum disorder (ASD). Thus, this study aimed to examine common and disease-specific features related to mesocorticolimbic circuits.

View Article and Find Full Text PDF

Background: Recently, we developed a generalizable brain network marker for the diagnosis of major depressive disorder (MDD) across multiple imaging sites using resting-state functional magnetic resonance imaging. Here, we applied this brain network marker to newly acquired data to verify its test-retest reliability and anterograde generalization performance for new patients.

Methods: We tested the sensitivity and specificity of our brain network marker of MDD using data acquired from 43 new patients with MDD as well as new data from 33 healthy controls (HCs) who participated in our previous study.

View Article and Find Full Text PDF

Posttraumatic Stress Disorder (PTSD) symptomatology disrupts inhibitory control during sustained attention. However, PTSD-related inhibitory control deficits are partially ameliorated when punishments and rewards are administered based on task performance, which suggests motivational processes contribute to these deficits. Additionally, PTSD may also impair error-related cognitive control following inhibitory control failures as measured by post-error slowing (PES).

View Article and Find Full Text PDF
Article Synopsis
  • Machine learning classifiers using resting-state fMRI are being used to explore the links between brain circuits and psychiatric disorders.
  • A large-scale database was created, including neuroimaging data from 993 patients and 1,421 healthy individuals, along with demographic details.
  • To ensure consistent data, nine healthy participants underwent brain imaging across 12 different scanners, and four datasets have been published for research use.
View Article and Find Full Text PDF

Multisite magnetic resonance imaging (MRI) is increasingly used in clinical research and development. Measurement biases-caused by site differences in scanner/image-acquisition protocols-negatively influence the reliability and reproducibility of image-analysis methods. Harmonization can reduce bias and improve the reproducibility of multisite datasets.

View Article and Find Full Text PDF

A common behavioral marker of optimal attention focus is faster responses or reduced response variability. Our previous study found two dominant brain states during sustained attention, and these states differed in their behavioral accuracy and reaction time (RT) variability. However, RT distributions are often positively skewed with a long tail (i.

View Article and Find Full Text PDF

Large-scale neuroimaging data acquired and shared by multiple institutions are essential to advance neuroscientific understanding of pathophysiological mechanisms in psychiatric disorders, such as major depressive disorder (MDD). About 75% of studies that have applied machine learning technique to neuroimaging have been based on diagnoses by clinicians. However, an increasing number of studies have highlighted the difficulty in finding a clear association between existing clinical diagnostic categories and neurobiological abnormalities.

View Article and Find Full Text PDF

In the search for brain markers of optimal attentional focus, the mainstream approach has been to first define attentional states based on behavioral performance, and to subsequently investigate "neural correlates" associated with these performance variations. However, this approach constrains the range of contexts in which attentional states can be operationalized by relying on overt behavior, and assumes a one-to-one correspondence between behavior and brain state. Here, we reversed the logic of these previous studies and sought to identify behaviorally-relevant brain states based solely on brain activity, agnostic to behavioral performance.

View Article and Find Full Text PDF

Psychiatric and neurological disorders are afflictions of the brain that can affect individuals throughout their lifespan. Many brain magnetic resonance imaging (MRI) studies have been conducted; however, imaging-based biomarkers are not yet well established for diagnostic and therapeutic use. This article describes an outline of the planned study, the Brain/MINDS Beyond human brain MRI project (BMB-HBM, FY2018 ~ FY2023), which aims to establish clinically-relevant imaging biomarkers with multi-site harmonization by collecting data from healthy traveling subjects (TS) at 13 research sites.

View Article and Find Full Text PDF

Sustained attention is a fundamental cognitive process that can be decoupled from distinct external events, and instead emerges from ongoing intrinsic large-scale network interdependencies fluctuating over seconds to minutes. Lapses of sustained attention are commonly associated with the subjective experience of mind wandering and task-unrelated thoughts. Little is known about how fluctuations in information processing underpin sustained attention, nor how mind wandering undermines this information processing.

View Article and Find Full Text PDF
Article Synopsis
  • Many studies show that applying machine learning techniques in clinical settings is tough due to inconsistencies in brain imaging data from different sites.
  • The research aims to create a reliable marker for major depressive disorder (MDD) by examining resting-state functional connectivity patterns in a diverse set of participants.
  • Using a harmonization method to minimize site differences, the new MDD classifier achieved about 70% accuracy when tested on an independent dataset from various imaging sites, highlighting its potential for accurate diagnosis and research reproducibility.
View Article and Find Full Text PDF

When collecting large amounts of neuroimaging data associated with psychiatric disorders, images must be acquired from multiple sites because of the limited capacity of a single site. However, site differences represent a barrier when acquiring multisite neuroimaging data. We utilized a traveling-subject dataset in conjunction with a multisite, multidisorder dataset to demonstrate that site differences are composed of biological sampling bias and engineering measurement bias.

View Article and Find Full Text PDF

Advances in functional magnetic resonance imaging have made it possible to provide real-time feedback on brain activity. Neurofeedback has been applied to therapeutic interventions for psychiatric disorders. Since many studies have shown that most psychiatric disorders exhibit abnormal brain networks, a novel experimental paradigm named connectivity neurofeedback, which can directly modulate a brain network, has emerged as a promising approach to treat psychiatric disorders.

View Article and Find Full Text PDF

Motor or perceptual learning is known to influence functional connectivity between brain regions and induce short-term changes in the intrinsic functional networks revealed as correlations in slow blood-oxygen-level dependent (BOLD) signal fluctuations. However, no cause-and-effect relationship has been elucidated between a specific change in connectivity and a long-term change in global networks. Here, we examine the hypothesis that functional connectivity (i.

View Article and Find Full Text PDF