Publications by authors named "Ayumu Nozawa"

Much attention has been paid to the beneficial health effect of tea catechins as one of the effective strategies to prevent obesity. The current study was carried out to investigate the role of tea catechins on the utilization of dietary energy sources in rats. The addition of 1% (w/w) tea catechins, mostly in gallate forms, to the diet brought about significant reductions in body weight gains and abdominal adipose tissue weights after 4-wk feeding periods compared to the control.

View Article and Find Full Text PDF

We have previously shown that theanine (=gamma-glutamylethylamide), an ingredient of green tea, has a protective effect against ischemic neuronal death in the hippocampal CA1 region of the gerbil brain without affecting ligand binding to ionotropic receptor subtypes of the neurotransmitter glutamate structurally related to theanine. The neurotransmitter pool of glutamate is thought to be fueled by the entry of the other structural analog glutamine (Gln) and subsequent cleavage by glutaminase. Although theanine did not inhibit [3H]glutamate accumulation, [3H]theanine was actively accumulated in a temperature-dependent and saturable manner in rat brain synaptosomal fractions.

View Article and Find Full Text PDF

Tea catechins are known to be epimerized by heat treatment. The effect of heat-epimerized tea catechins on serum cholesterol concentration was compared with that of green tea catechins. Our observations strongly suggest that both tea catechins and heat-epimerized tea catechins lower serum cholesterol concentration by inhibiting cholesterol absorption in the intestine.

View Article and Find Full Text PDF

Tea has long been believed to be a healthy beverage, and its beneficial effects are almost all attributed to catechins. The effect of catechins on postprandial hypertriglyceridemia in rats was investigated in this study. A lipid emulsion administered orally to rats with (-)-epigallocatechin gallate at a dose of 100 mg/kg resulted in the increase in plasma triacylglycerol being significantly inhibited after 1 and 2 h compared to the case without (-)-epigallocatechin gallate.

View Article and Find Full Text PDF

Epidemiological surveys suggest that a higher intake of tea may be associated with a lower risk of CHD. There is accumulating evidence that postprandial lipaemia makes a substantial contribution to the incidence of CHD. Our aim was, therefore, to evaluate the effect of tea catechins (major ingredients in green tea) on postprandial lipid responses in human subjects after the consumption of test meals.

View Article and Find Full Text PDF

Tea catechins, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG), have been shown to be epimerized to (-)-catechin (C), (-)-gallocatechin (GC), (-)-catechin gallate (CG), and (-)-gallocatechin gallate (GCG), respectively, during heat treatment. In this study, we examined the effect of tea catechins rich in ECG and EGCG and heat-treated tea catechins rich in CG and GCG on postprandial hypertriacylglycerolemia in rats. Both tea catechins and heat-treated tea catechins suppressed postprandial hypertriacylglycerolemia.

View Article and Find Full Text PDF

It has been known that tea catechins, (-)-epicatechin (1), (-)-epigallocatechin (2), (-)-epicatechin gallate (3), and (-)-epigallocatechin gallate (4) are epimerized to(-)-catechin (5), (-)-gallocatechin (6), (-)-catechin gallate (7), and (-)-gallocatechin gallate (8), respectively, during retort pasteurization. We previously reported that tea catechins, mainly composed of 3 and 4, effectively inhibit cholesterol absorption in rats. In this study, the effect of heat-epimerized catechins on cholesterol absorption was compared with tea catechins.

View Article and Find Full Text PDF

In an investigation of the mechanisms of the neuroprotective effects of theanine (gamma-glutamylethylamide) in brain ischemia, inhibition by theanine of the binding of [3H](RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), [3H]kainate, and [3H](E)-3-(2-phenyl-2-carboxyethenyl)-4,6-dichloro-1-H-indole-2-carboxylic acid (MDL 105,519) to glutamate receptors was studied in terms of its possible inhibiting effects on the three receptor subtypes (AMPA, kainate, and NMDA glycine), with rat cortical neurons. Theanine bound the three receptors, but its IC50 of theanine was 80- to 30,000-fold less than that of L-glutamic acid.

View Article and Find Full Text PDF