Publications by authors named "Ayumu Ishijima"

Single-shot optical imaging based on ultrashort lasers has revealed nonrepetitive processes in subnanosecond timescales beyond the recording range of conventional high-speed cameras. However, nanosecond photography without sacrificing short exposure time and image quality is still missing because of the gap in recordable timescales between ultrafast optical imaging and high-speed electronic cameras. Here, we demonstrate nanosecond photography and ultrawide time-range high-speed photography using a spectrum circuit that produces interval-tunable pulse trains while keeping short pulse durations.

View Article and Find Full Text PDF

Ultrasound-guided protein delivery is promising for site-specific control of cellular functions in the deep interior of the body in a noninvasive manner. Herein, we propose a method for cytosolic protein delivery based on ultrasound-guided intracellular vaporization of perfluorocarbon nano-droplets. The nano-droplets were conjugated with cargo proteins through a bio-reductively cleavable linker and introduced into living cells via antibody-mediated binding to a cell-surface receptor, which gets internalized through endocytosis.

View Article and Find Full Text PDF

Frequency- and time-domain Brillouin scattering spectroscopy are powerful tools to read out the mechanical properties of complex systems in material and life sciences. Indeed, coherent acoustic phonons in the time-domain method offer superior depth resolution and a stronger signal than incoherent acoustic phonons in the frequency-domain method. However, it requires scanning of delay time between laser pulses for pumping and probing coherent acoustic phonons.

View Article and Find Full Text PDF

Cardiac arrhythmias are a primary contributor to sudden cardiac death, a major unmet medical need. Because right ventricular (RV) dysfunction increases the risk for sudden cardiac death, we examined responses to RV stress in mice. Among immune cells accumulated in the RV after pressure overload-induced by pulmonary artery banding, interfering with macrophages caused sudden death from severe arrhythmias.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new method called sequentially timed all-optical mapping photography (STAMP) that enhances the number of frames captured without losing pixel resolution by using a slicing mirror in a branched 4f lens system.
  • The slicing mirror, crafted with high precision, has 18 different angled facets to separate the laser light path into multiple streams.
  • This enhanced STAMP technique was successfully demonstrated by imaging the rapid dynamics of laser ablation, capturing 18 frames at a remarkable rate of 126 billion frames per second, showcasing its potential for studying previously unobserved ultrafast events.
View Article and Find Full Text PDF

The blood-brain barrier (BBB) has hampered the efficiency of nanoparticle delivery into the brain via conventional strategies. The widening of BBB tight junctions via focused ultrasound (FUS) offers a promising approach for enhancing the delivery of nanoparticles into the brain. However, there is currently an insufficient understanding of how nanoparticles pass through the opened BBB gaps.

View Article and Find Full Text PDF

Background: Phase-change nanodroplets (PCNDs), which are liquid perfluorocarbon nanoparticles, have garnered much attention as ultrasound-responsive nanomedicines. The vaporization phenomenon has been employed to treat tumors mechanically. However, the ultrasound pressure applied to induce vaporization must be low to avoid damage to nontarget tissues.

View Article and Find Full Text PDF

Light scattering by tissues limits performance in biological sensing or stimulation. Here we present a photoacoustic technique that increases light transmittance by one order of magnitude and enables light localization in deep tissue. Laser-induced nonlinear acoustic waves are utilized to produce a high refractive index contrast in scattering medium without high-intensity pressure.

View Article and Find Full Text PDF

Phase-change nano-droplets (PCNDs) are sub-micron particles that are coated with phospholipid and contain liquid-state perfluorocarbons such as perfluoropentane (boiling point=29°C) and perfluorohexane (boiling point=57°C), which can vapourise upon application of ultrasound. The bubbles generated by such reactions can serve as ultrasound contrast agents or HIFU sensitisers. However, the lifetime of bubbles generated from PCNDs on μs-order is not well known.

View Article and Find Full Text PDF

We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection.

View Article and Find Full Text PDF