Publications by authors named "Ayumi Ueno"

Atopic dermatitis is a multi-pathogenic disease characterized by chronic skin inflammation and barrier dysfunction. Therefore, improving the skin's ability to form an epidermal barrier and suppressing the production of cytokines that induce type 2 inflammatory responses are important for controlling atopic dermatitis symptoms. (-)-Blebbistatin, a non-muscle myosin II inhibitor, has been suggested to improve pulmonary endothelial barrier function and control inflammation by suppressing immune cell migration; however, its efficacy in atopic dermatitis is unknown.

View Article and Find Full Text PDF

Wound healing is regulated by complex interactions between the keratinocytes and other cell types including fibroblasts. Recently, adipose-derived mesenchymal stromal/stem cells (ASCs) have been reported to influence wound healing positively via paracrine involvement. However, their roles in keratinocytes are still obscure.

View Article and Find Full Text PDF
Article Synopsis
  • DYKDDDDK peptide (FLAG) is valuable for studying proteins lacking specific antibodies.
  • Researchers created a high-affinity monoclonal antibody (2H8) for FLAG, but it had issues with nonspecific signals in mouse tissues.
  • A chimeric version of the 2H8 antibody was developed, combining mouse and human components, which successfully reduced nonspecific signals while maintaining sensitivity in detecting FLAG-tagged proteins.
View Article and Find Full Text PDF

Necrosis has been studied extensively since the early days of medicine, with some patterns of necrosis found to be programmed like apoptotic cell death. However, mechanisms of programmed necrosis (necroptosis) are yet to be fully elucidated. In this study, we investigated how the hemagglutinating virus of Japan-envelope (HVJ-E) induces necrosis in mouse xenografts of human neuroblastoma cells.

View Article and Find Full Text PDF

A thermophilic bacterium, identified as a neighboring species to Geobacillus thermocatenulatus, having a growth optimum at 55 degrees C and, capable of degrading nylon 12, was isolated from soil by enrichment culture technique at 60 degrees C. At this temperature, the strain grew on 5 g nylon 12 l(-1) with a decrease in its molecular weight from 41000 to 11000 over 20 d. The degradation was assumed to be due to endogenous hydrolysis of amide bond in nylon 12.

View Article and Find Full Text PDF