Publications by authors named "Ayumi Shirai"

Renal tubules regulate blood pressure and humoral homeostasis. Mediators that play a significant role in regulating the transport of solutes and water include angiotensin II (AngII) and nitric oxide (NO). AngIIcan significantly raise blood pressure via effects on the heart, vasculature, and renal tubules.

View Article and Find Full Text PDF

Hyperinsulinemia can contribute to hypertension through effects on sodium transport. To test whether the stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in insulin resistance, we compared the effects of insulin on abdominal adipocytes and proximal tubules in rats and humans. Insulin markedly stimulated the sodium-bicarbonate cotransporter (NBCe1) activity in isolated proximal tubules through the phosphoinositide 3-kinase (PI3-K) pathway.

View Article and Find Full Text PDF

Sodium-coupled bicarbonate absorption from renal proximal tubules (PTs) plays a pivotal role in the maintenance of systemic acid/base balance. Indeed, mutations in the Na(+)-HCO3 (-) cotransporter NBCe1, which mediates a majority of bicarbonate exit from PTs, cause severe proximal renal tubular acidosis associated with ocular and other extrarenal abnormalities. Sodium transport in PTs also plays an important role in the regulation of blood pressure.

View Article and Find Full Text PDF

Stimulation of renal proximal tubule (PT) transport by angiotensin II (Ang II) is critical for regulation of BP. Notably, in rats, mice, and rabbits, the regulation of PT sodium transport by Ang II is biphasic: transport is stimulated by picomolar to nanomolar concentrations of Ang II but inhibited by nanomolar to micromolar concentrations of Ang II. However, little is known about the effects of Ang II on human PT transport.

View Article and Find Full Text PDF

Homozygous mutations in the electrogenic Na(+)-HCO3 (-) cotransporter NBCe1 cause proximal renal tubular acidosis (pRTA) associated with extrarenal manifestations such as ocular abnormalities and migraine. Previously, the NBCe1 cytosolic mutant S982NfsX4 was shown to have a dominant negative effect by forming hetero-oligomer complexes with wild type (WT), which might be responsible for the occurrence of glaucoma and migraine in the heterozygous family members. In this study, we investigated whether the NBCe1 L522P mutant has a similar dominant negative effect.

View Article and Find Full Text PDF

Thiazolidinediones (TZDs) improve insulin resistance by activating a nuclear hormone receptor, peroxisome proliferator-activated receptor γ (PPARγ). However, the use of TZDs is associated with plasma volume expansion through a mechanism that remains to be clarified. Here we showed that TZDs rapidly stimulate sodium-coupled bicarbonate absorption from the renal proximal tubule in vitro and in vivo.

View Article and Find Full Text PDF

The electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1 encoded by SLC4A4 plays essential roles in the regulation of intracellular/extracellular pH. Homozygous mutations in NBCe1 cause proximal renal tubular acidosis associated with ocular abnormalities. In the present study, we tried to perform functional characterization of the four nonsynonymous single nucleotide polymorphisms (SNPs), E122G, S356Y, K558R, and N640I in NBCe1A.

View Article and Find Full Text PDF