Publications by authors named "Ayumi Matsuyama-Kato"

(CP)-induced necrotic enteritis (NE) is an economically important disease in the broiler chicken industry. The incidence of NE is common in 3-to-6-wk-old broiler chickens, once maternal antibodies start declining. Developing an effective vaccination strategy against NE, preferably delivering a single dose of vaccine at hatch to protect broiler chickens against NE without a booster vaccine, is an enormous challenge.

View Article and Find Full Text PDF

Oligodeoxynucleotides containing CpG motifs (CpG-ODN) can promote antimicrobial immunity in chickens by enriching immune compartments and activating immune cells. Innate memory, or trained immunity, has been demonstrated in humans and mice, featuring the absence of specificity to the initial stimulus and subsequently cross-protection against pathogens. We hypothesize that CpG-ODN can induce trained immunity in chickens.

View Article and Find Full Text PDF

In the past, we demonstrated that oligodeoxynucleotides containing CpG motifs (CpG-ODN) mimicking bacterial DNA, stimulate the innate immune system of neonatal broiler chickens and protect them against Escherichia coli and Salmonella Typhimurium (S. Typhimurium) septicemia. The first line of innate immune defense mechanism is formed by heterophils and plays a critical protective role against bacterial septicemia in avian species.

View Article and Find Full Text PDF

Marek's disease (MD), caused by the Marek's disease virus, is a lymphoproliferative disease in chickens that can be controlled by vaccination. However, the current vaccines can limit tumor growth and death but not virus replication and transmission. The present study aimed to evaluate host responses following intramuscular injection of an mRNA vaccine encoding gB and pp38 proteins of the MDV within the first 36 h.

View Article and Find Full Text PDF

Avian influenza viruses (AIV), including the H9N2 subtype, pose a major threat to the poultry industry as well as to human health. Although vaccination provides a protective control measure, its effect on transmission remains uncertain in chickens. The objective of the present study was to investigate the efficacy of beta-propiolactone (BPL) whole inactivated H9N2 virus (WIV) vaccine either alone or in combination with CpG ODN 2007 (CpG), poly(I:C) or AddaVax™ (ADD) to prevent H9N2 AIV transmission in chickens.

View Article and Find Full Text PDF

Marek's disease is a contagious proliferative disease of chickens caused by an alphaherpesvirus called Marek's disease virus. A bivalent mRNA vaccine encoding MDV's glycoprotein-B and phosphoprotein-38 antigens was synthesized and encapsulated in lipid nanoparticles. Tumor incidence, lesion score, organ weight indices, MDV genome load and cytokine expression were used to evaluate protection and immunostimulatory effects of the tested mRNA vaccine after two challenge trials.

View Article and Find Full Text PDF

The H9N2 subtype avian influenza virus (AIV) is a low pathogenic AIV that infects avian species and lead to huge economical losses in the poultry industry. The unique immunomodulatory properties of Retinoic acid (RA), an active component of vitamin A, highlights its potential to enhance chicken's resistance to infectious diseases and perhaps vaccine-induced immunity. Therefore, the present study evaluated the effects of in ovo supplementation of RA on the immunogenicity and protective efficacy of an inactivated avian influenza virus vaccine.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is generated by the cross-talk among tumor cells, immune system cells, and stromal cells. The TME generated by Marek's disease virus (MDV) is suggested to display an immunosuppressive milieu due to immune inhibitory molecules and cytokines which are possibly induced by MDV-transformed cells and regulatory T cells. Both anti-tumor and pro-tumor gamma delta (γδ) T cells are reported in human cancer.

View Article and Find Full Text PDF

The host response to pathogenic microbes can lead to expression of interleukin (IL)-17, which has antimicrobial and anti-viral activity. However, relatively little is known about the basic biological role of chicken IL-17A against avian viruses, particularly against Marek's disease virus (MDV). We demonstrate that, following MDV infection, upregulation of IL-17A mRNA and an increase in the frequency of IL-17A+ T cells in the spleen occur compared to control chickens.

View Article and Find Full Text PDF

Transmission of H9N2 avian influenza virus (AIV) can occur in poultry by direct or indirect contact with infected individuals, aerosols, large droplets and fomites. The current study investigated the potential of H9N2 AIV transmission in chickens via a fecal route. Transmission was monitored by exposing naïve chickens to fecal material from H9N2 AIV-infected chickens (model A) and experimentally spiked feces (model B).

View Article and Find Full Text PDF
Article Synopsis
  • * A study found that infusing activated γδ T cells into chickens reduced virus replication and tumor formation associated with MDV.
  • * The activated γδ T cells boosted the production of interferon-gamma (IFN-γ) and other immune responses, suggesting they play a protective role against Marek's disease.
View Article and Find Full Text PDF

Gamma delta (γδ) T cells are highly enriched in mucosal barrier sites including intestinal tissues where microbial infections and tumors often originate in mammals. Human γδ T cells recognize stress antigens and microbial signals via their T cell receptor (TCR), natural killer (NK) receptors, and pattern recognition receptors. However, little is known about antigens or ligands capable of stimulating chicken γδ T cells.

View Article and Find Full Text PDF

Infection with pathogenic viruses is often sensed by innate receptors such as Toll-Like Receptors (TLRs) which stimulate type I and III interferons (IFNs) responses, to generate an antiviral state within many cell types. To counteract these antiviral systems, many viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode non-structural proteins (NSPs) that mediate immune evasion. Using an overexpression system in A549 ​cells, we demonstrated a significant increase ( ​≤ ​0.

View Article and Find Full Text PDF

Marek's disease (MD) vaccines reduce the incidence of MD but cannot control virus shedding. To develop new vaccines, it is essential to elucidate mechanisms of immunity to Marek's disease virus (MDV) infection. In this regard, gamma delta (γδ) T cells may play a significant role in prevention of viral spread and tumor surveillance.

View Article and Find Full Text PDF

Vaccines against Marek's disease can protect chickens against clinical disease; however, infected chickens continue to propagate the Marek's disease virus (MDV) in feather follicles and can shed the virus into the environment. Therefore, the present study investigated if MDV could induce an immunoregulatory microenvironment in feathers of chickens and whether vaccines can overcome the immune evasive mechanisms of MDV. The results showed an abundance of CD4CD25 and CD4 transforming growth factor-beta (TGF-β) T regulatory cells in the feathers of MDV-infected chickens at 21 days post-infection.

View Article and Find Full Text PDF

Several vaccines have been used to control Marek's disease (MD) in chickens. However, the emergence of new strains of Marek's disease virus (MDV) imposes a threat to vaccine efficacy. Therefore, the current study was carried out to investigate whether concurrent administration of probiotics with the herpesvirus of turkeys (HVT) vaccine enhances its protective efficacy against MDV infection.

View Article and Find Full Text PDF

Marek's Disease Virus (MDV) infects chickens via respiratory route and causes lymphomas in internal organs including gastrointestinal tract. MDV infection causes a shift in the gut microbiota composition. However, interactions between the gut microbiota and immune responses against MDV infection are not well understood.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are a family of innate receptors that recognize pathogen-associated molecular patterns, including double-stranded RNA, CpG DNA and lipopolysaccharide (LPS). After interaction with their ligands, TLRs initiate innate responses that are manifested by activating cells and inducing expression of cytokines that help mediate adaptive immune responses. TLR ligands (TLR-Ls) have the potential to be used prophylactically (alone) or as vaccine adjuvants to promote host immunity.

View Article and Find Full Text PDF

Gallid herpesvirus 2 (GaHV-2) causes malignant lymphomas in chickens (Marek's disease, MD). Although MD is controlled through vaccination efforts, field isolates of GaHV-2 have increased in virulence worldwide and even cause MD in vaccinated chickens. GaHV-2 strains are classified into four categories (mild, virulent, very virulent and very virulent +) based on the virulence exhibited in experimental infection in unvaccinated or MD-vaccinated susceptible chickens.

View Article and Find Full Text PDF

PD-L2 is a ligand of the immunoinhibitory receptor PD-1. Here, we report functional and expression analyses of PD-L2 in tumor lesions and spleens from chickens infected with gallid herpesvirus 2 (GaHV-2, Marek's disease virus), which induces malignant lymphomas in chickens. We show that the expression of IFN-γ protein was decreased in PBMCs and splenocytes co-cultured with PD-L2-expressing cells and that the expression of PD-L2 mRNA was significantly higher in the spleens of infected chickens in the latent phase and in tumor lesions caused by GaHV-2.

View Article and Find Full Text PDF

Serotype 1 strains of Marek's disease virus (MDV-1) cause malignant lymphomas in chickens (Marek's disease; MD). Although MD has been controlled by vaccination, field isolates of MDV-1 have tended to increase in virulence and cause MD even in vaccinated chickens. Meq, a putative MDV-1 oncoprotein, resembles the Jun/Fos family of basic leucine zipper (bZIP) transcription factors and can regulate the expression of viral and cellular genes as a homodimer or as a heterodimer with a variety of bZIP family proteins.

View Article and Find Full Text PDF

Background: An immunoinhibitory receptor, programmed death-1 (PD-1), and its ligand, programmed death-ligand 1 (PD-L1), are involved in immune evasion mechanisms for several pathogens causing chronic infections and for neoplastic diseases. However, little has been reported for the functions of these molecules in chickens. Thus, in this study, their expressions and roles were analyzed in chickens infected with Marek's disease virus (MDV), which induces immunosuppression in infected chickens.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpent1ttg7hurm8m3i7ao7ijfetra60p3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once