Publications by authors named "Ayumi Goto"

Cellular repressor of E1A-stimulated genes 1 (CREG1) is a multifunctional secreted glycoprotein that regulates p16-dependent cellular senescence and cell differentiation and accelerates brown adipogenesis. We recently demonstrated that the CREG1 levels in serum, liver, and kidney were significantly increased in aged wild-type (WT) mice, where age-related renal impairment was further aggravated by promoting cellular senescence. Based on these findings, we hypothesized that the constitutive regulation of CREG1 expression in vivo may affect lifespan.

View Article and Find Full Text PDF

We conducted a questionnaire survey with sports pharmacists, who engage in anti-doping, to elucidate the activities and challenges they face in their daily work. A total of 218 responses were obtained with the cooperation of the four prefectural pharmacists' associations. We found that 46.

View Article and Find Full Text PDF

We previously demonstrated that dietary supplementation with Dunaliella tertiolecta (DT) increases uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) and improves diet-induced obesity (DIO) in C57BL/6 J mice at thermoneutrality (30 °C). Here, we investigated whether DT improves DIO in a thermoneutral UCP1-deficient (KO) animal. KO mice were fed a high-fat diet supplemented with DT for 12 weeks.

View Article and Find Full Text PDF

The cellular repressor of adenovirus early region 1A-stimulated gene 1 (CREG1) is a secreted glycoprotein involved in cell differentiation and energy metabolism. It also binds to insulin-like growth factor 2 receptor (IGF2R), a protein implicated in muscle regeneration. However, whether CREG1 regulates the regeneration and metabolism of skeletal muscles via IGF2R remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Thermogenic brown and beige fat cells play a crucial role in regulating energy metabolism and protecting against obesity and related diseases by expressing uncoupling protein 1 (UCP1).* -
  • The study explored how administering Cellular repressor of E1A-stimulated genes 1 (CREG1) affects UCP1 and diet-induced obesity (DIO) in mice at a comfortable temperature of 30°C, leading to increased UCP1 levels and reduced body fat.* -
  • Results showed that CREG1 treatment boosted energy metabolism and fat browning in mice, but this effect was absent in UCP1-knockout mice, highlighting the essential role of UCP1 in combating obesity through CREG
View Article and Find Full Text PDF
Article Synopsis
  • CREG1 is a secreted glycoprotein that promotes cellular senescence and has been linked to increased brown fat formation in transgenic mice.
  • In a study, CREG1 was found to improve age-related metabolic issues like obesity and renal dysfunction in older transgenic mice compared to wild-type mice.
  • The study suggests that elevated CREG1 levels could help alleviate kidney aging and dysfunction by reducing certain senescence-related markers and improving kidney structure and function.
View Article and Find Full Text PDF

We investigated the effect of evodiamine-containing microalga (DT) on the prevention of diet-induced obesity in a thermoneutral C57BL/6J male (30 °C). It attenuates the activity of brown adipose tissue (BAT), which accelerates diet-induced obesity. Nine-week-old mice were fed a high-fat diet supplemented with 10 g (Low group) or 25 g (High group) DT powder per kg food for 12 weeks.

View Article and Find Full Text PDF

This study investigated the effects of AdipoRon, which is an agonist for adiponectin receptor 1 (AdipoR1) and AdipoR2, on the protein content, myotube diameter, and number of nuclei per myotube of C2C12 cells and skeletal muscle mass in C57BL/6J mice. AdipoRon suppressed the protein content, myotube diameter, and number of nuclei per myotube of C2C12 cells of C2C12 myotubes in a dose-dependent manner. Adiponectin-associated decline of protein content, diameter, and number of nuclei per myotube in C2C12 myotubes was partially rescued by knockdown of AdipoR1 and/or AdipoR2.

View Article and Find Full Text PDF

5'AMP-activated protein kinase (AMPK) plays an important role in the regulation of skeletal muscle mass and fiber-type distribution. However, it is unclear whether AMPK is involved in muscle mass change or transition of myosin heavy chain (MyHC) isoforms in response to unloading or increased loading. Here, we checked whether AMPK controls muscle mass change and transition of MyHC isoforms during unloading and reloading using mice expressing a skeletal-muscle-specific dominant-negative AMPKα1 (AMPK-DN).

View Article and Find Full Text PDF

Diets enriched with advanced glycation end products (AGE) have recently been related to muscle dysfunction processes. However, it remains unclear whether long-term exposure to an AGE-enriched diet impacts physiological characteristics of skeletal muscles. Therefore, we explored the differences in skeletal muscle mass, contractile function and molecular responses between mice receiving a diet high in AGE (H-AGE) and low in AGE (L-AGE) for 16 weeks.

View Article and Find Full Text PDF

Heat stress (HS) stimulates heat shock protein (HSP) 72 mRNA expression, and the period after an increase in HSP72 protein is characterized by enhanced glucose metabolism in skeletal muscle. We have hypothesized that, prior to an increase in the level of HSP72 protein, HS activates glucose metabolism by acutely stimulating 5'-AMP-activated protein kinase (AMPK). Rat epitrochlearis muscle was isolated and incubated either with or without HS (42°C) for 10 and 30 min.

View Article and Find Full Text PDF
Article Synopsis
  • AMPK plays a role in managing skeletal muscle mass, but its specific function during muscle atrophy hasn't been thoroughly studied.
  • In a study with transgenic mice overexpressing a mutated form of AMPK (AMPK-DN) and their wild-type counterparts, researchers found that both groups experienced muscle weight and size loss after two weeks of hindlimb suspension, with wild-type mice showing greater atrophy.
  • While markers of protein synthesis remained unchanged, muscle degradation markers were elevated in wild-type mice under atrophy conditions, indicating that AMPK might help regulate muscle atrophy by influencing the protein degradation process, particularly the ubiquitin-proteasome pathway.
View Article and Find Full Text PDF

Conservative therapies, mainly resting care for the damaged muscle, are generally used as a treatment for skeletal muscle injuries (such as muscle fragmentation). Several past studies reported that microcurrent electrical neuromuscular stimulation (MENS) facilitates a repair of injured soft tissues and shortens the recovery period. However, the effects of MENS on the regeneration in injured skeletal muscle are still unclear.

View Article and Find Full Text PDF

Salicylate (SAL) has been recently implicated in the antidiabetic effect in humans. We assessed whether 5'-AMP-activated protein kinase (AMPK) in skeletal muscle is involved in the effect of SAL on glucose homeostasis. Rat fast-twitch epitrochlearis and slow-twitch soleus muscles were incubated in buffer containing SAL.

View Article and Find Full Text PDF

5'-AMP-activated protein kinase (AMPK) plays an important role as a negative regulator of skeletal muscle mass. However, the precise mechanism of AMPK-mediated regulation of muscle mass is not fully clarified. Heat shock proteins (HSPs), stress-induced molecular chaperones, are related with skeletal muscle adaptation, but the association between AMPK and HSPs in skeletal muscle hypertrophy is unknown.

View Article and Find Full Text PDF

The purpose of this study was to investigate the expression level of adiponectin and its related molecules in hypertrophied and atrophied skeletal muscle in mice. The expression was also evaluated in C2C12 myoblasts and myotubes. Both mRNA and protein expression of adiponectin, mRNA expression of adiponectin receptor (AdipoR) 1 and AdipoR2, and protein expression of adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif 1 (APPL1) were observed in C2C12 myoblasts.

View Article and Find Full Text PDF

The purpose of this study was to investigate a role of heat shock transcription factor 1 (HSF1)-mediated stress response during regeneration of injured soleus muscle by using HSF1-null mice. Cardiotoxin (CTX) was injected into the left muscle of male HSF1-null and wild-type mice under anesthesia with intraperitoneal injection of pentobarbital sodium. Injection of physiological saline was also performed into the right muscle.

View Article and Find Full Text PDF

Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading.

View Article and Find Full Text PDF

Microcurrent electrical nerve stimulation (MENS) has been used to facilitate recovery from skeletal muscle injury. However, the effects of MENS on unloading-associated atrophied skeletal muscle remain unclear. Effects of MENS on the regrowing process of unloading-associated atrophied skeletal muscle were investigated.

View Article and Find Full Text PDF

Effects of heat stress on skeletal muscle mass in young and aged mice were investigated. Young (7-week) and aged (106-week) male C57BL/6J mice were randomly assigned to control and heat-stressed groups in each age. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anesthesia.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrdpl7em9ehe67ko8vhu06ia0q9ak2l7l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once