Publications by authors named "Ayten Gurbanova"

The existence of absence epilepsy and temporal lobe epilepsy in the same patient is not common in clinical practice. The reason why both types of seizures are rarely seen in the same patient is not well understood. Therefore, we aimed to investigate kindling in a well known model of human absence epilepsy, genetic absence epilepsy rats from Strasbourg (GAERS).

View Article and Find Full Text PDF

We showed previously that genetic absence epilepsy rats from Strasbourg (GAERS) resist secondary generalization of focal limbic seizures after electrical kindling. We now investigate the effect of intra-amygdaloid injection of kainic acid, as another model of temporal lobe epilepsy, focusing on epileptogenesis, spike-and-wave discharges (SWDs), and the transition from basal to SWD states in GAERS. The EEG was recorded from the hippocampus and cortex of adult GAERS and Wistar rats before kainic acid injections into the basolateral amygdala and for 3 months thereafter.

View Article and Find Full Text PDF

The involvement of the thalamus in limbic epileptogenesis has recently drawn attention to the connectivity between the nuclei of the thalamus and limbic structures. Thalamo-limbic circuits are thought to regulate limbic seizure activity whereas thalamocortical circuits are involved in the expression and generation of spike-and-wave discharges (SWDs) in the absence epilepsy models. Genetic Absence Epilepsy Rats From Strasbourg (GAERS) and WAG/Rij (Wistar Albino Glaxo from Rijswijk) are well-defined genetic animal models of absence epilepsy.

View Article and Find Full Text PDF

1. Spontaneous 7-10 Hz spike-wave discharges (SWDs) are the electroencephalographic hallmark of absence seizures, as can be observed in WAG/Rij as well as in GAERS, two commonly used well-validated genetic rat models of absence epilepsy. A local upregulation of sodium channels within the perioral region of the primary somatosensory cortex indicated an initiation site for SWDs in WAG/Rij rats, in line with a new theory that assumes that SWDs have a cortical focal origin in the perioral region of the somatosensory cortex.

View Article and Find Full Text PDF

Purpose: The kindling model in rats with genetic absence epilepsy is suitable for studying mechanisms involved in the propagation and generalization of seizure activity in the convulsive and nonconvulsive components of epilepsy. In the present study, we compared the amygdala kindling rate and afterdischarge characteristics of the nonepileptic Wistar control rat with a well-validated model of absence epilepsy, the WAG/Rij rat, and demonstrated the effect of amygdala kindling on spike-and-wave discharges (SWDs) in the WAG/Rij group.

Methods: Electrodes were stereotaxically implanted into the basolateral amygdala of rats for stimulation and recording and into the cortex for recording.

View Article and Find Full Text PDF