Publications by authors named "Aytac Z"

is a widespread genus comprising approximately 3500 species, both annual and perennial, found across Asia, Europe, Africa, and the Americas. In Turkey, it is represented by 63 sections and 485 taxa with a high endemism ratio (51%). In traditional medicine, the roots of various species represent very old and well-known drugs used for antiperspirant, diuretic, and tonic purposes, as well as for the treatment of nephritis, diabetes, leukemia, and uterine cancer.

View Article and Find Full Text PDF

Food waste and food safety motivate the need for improved food packaging solutions. However, current films/coatings addressing these issues are often limited by inefficient release dynamics that require large quantities of active ingredients. Here we developed antimicrobial pullulan fibre (APF)-based packaging that is biodegradable and capable of wrapping food substrates, increasing their longevity and enhancing their safety.

View Article and Find Full Text PDF

The adoption of suitable irrigation levels (IRL), humic acid doses (HAD) and soil mulching (SM) are important tools for improving the morpho-physiological and biochemical traits of medicinal and aromatic plants. L. cultivated under four IRL: IRL 100 = 100% FC-IRL 75 = 75% FC-IRL 50 = 50% FC-IRL 25 = 25% FC and four HAD: HA 0 = 0.

View Article and Find Full Text PDF

From a materials perspective, the pillars for the development of clinically translatable scaffold-based strategies for craniomaxillofacial (CMF) bone and periodontal regeneration have included electrospinning and 3D printing (biofabrication) technologies. Here, we offer a detailed analysis of the latest innovations in 3D (bio)printing strategies for CMF bone and periodontal regeneration and provide future directions envisioning the development of advanced 3D architectures for successful clinical translation. First, the principles of electrospinning applied to the generation of biodegradable scaffolds are discussed.

View Article and Find Full Text PDF

The inefficient delivery of agrichemicals in agrifood systems is among the leading cause of serious negative planetary and public health impacts. Such inefficiency is mainly attributed to the inability to deliver the agrichemicals at the right place (target), right time, and right dose. In this study, scalable, biodegradable, sustainable, biopolymer-based multistimuli responsive core-shell nanostructures were developed for smart agrichemical delivery.

View Article and Find Full Text PDF

Active food packaging materials that are sustainable, biodegradable, and capable of precise delivery of antimicrobial active ingredients (AIs) are in high demand. Here, we report the development of novel enzyme- and relative humidity (RH)-responsive antimicrobial fibers with an average diameter of 225 ± 50 nm, which can be deposited as a functional layer for packaging materials. Cellulose nanocrystals (CNCs), zein (protein), and starch were electrospun to form multistimuli-responsive fibers that incorporated a cocktail of both free nature-derived antimicrobials such as thyme oil, citric acid, and nisin and cyclodextrin-inclusion complexes (CD-ICs) of thyme oil, sorbic acid, and nisin.

View Article and Find Full Text PDF

(Cistaceae) comprises a number of white- and purple-flowering shrub species widely distributed in the Mediterranean basin. Within genus many taxa are subject to various taxonomic uncertainties. , a prominent member of the purple-flowered clade, is a prime case of the current taxonomic troubles.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the wound healing effects of the methanolic and aqueous extracts of N. Robson obtained by two different methods as well as its cytotoxicity, antioxidant activity, and selected phytochemical constituents.

Materials And Methods: Total phenolic and flavonoid contents were measured using spectrophotometry-based methods.

View Article and Find Full Text PDF

Electrospun nanofibers incorporated with inclusion complex (IC) of niclosamide (NIC) and hydroxypropyl-beta-cyclodextrin (HPβCD) (NIC-HPβCD-IC) was produced from pH-responsive polymer (Eudragit® L100, EUD), which disintegrates at pH values higher than 6, (EUD-NIC-HPβCD-IC-NF) for targeted delivery of NIC to the colon. Pristine EUD nanofibers (EUD-NF), only NIC loaded (EUD-NIC-NF) and physical mixture of NIC and HPβCD loaded EUD nanofibers (EUD-NIC-HPβCD-NF) were also produced as reference. SEM images revealed the bead-free and uniform morphology of nanofibers.

View Article and Find Full Text PDF

Oral bacterial infection represents the leading cause of the gradual destruction of tooth and periodontal structures anchoring the teeth. Lately, injectable hydrogels have gained increased attention as a promising minimally invasive platform for localized delivery of personalized therapeutics. Here, an injectable and photocrosslinkable gelatin methacryloyl (GelMA) hydrogel is successfully engineered with ciprofloxacin (CIP)-eluting short nanofibers for oral infection ablation.

View Article and Find Full Text PDF

One of the most damaging pathologies that affects the health of both soft and hard tissues around the tooth is periodontitis. Clinically, periodontal tissue destruction has been managed by an integrated approach involving elimination of injured tissues followed by regenerative strategies with bone substitutes and/or barrier membranes. Regrettably, a barrier membrane with predictable mechanical integrity and multifunctional therapeutic features has yet to be established.

View Article and Find Full Text PDF

Beta-cyclodextrin (β-CD) is an oligosaccharide commonly used to improve the aqueous solubility of lipophilic drugs (e.g., dexamethasone, DEX).

View Article and Find Full Text PDF

Electrospun gelatin nanofibrous matrix encapsulating ciprofloxacin (CIP)/hydroxypropyl-beta-cyclodextrin (HPβCD)-inclusion complex (IC) was produced via electrospinning method. Computational modeling indicated that van der Waals forces are the most significant driving forces for the complexation and hydrophobic moiety (piperazinyl) of CIP, which was included in the cavity of HPβCD. The FTIR and XRD studies indicated the formation of CIP/HPβCD host/guest complexation, FTIR also suggested that hydrophobic moiety of CIP is in the HPβCD cavity in parallel with the computational modeling results.

View Article and Find Full Text PDF

Here, we report a facile production of citral/cyclodextrin (CD) inclusion complex (IC) nanofibers (NFs) from three types of CDs (hydroxypropyl-beta-cyclodextrin (HPβCD), hydroxypropyl-gamma-cyclodextrin (HPγCD), and methylated-beta-cyclodextrin (MβCD)) by an electrospinning technique without the need of any polymeric carrier matrix. Self-standing nanofibrous webs of citral/CD-IC nanofibers (citral/CD-IC-NF) with uniform fiber morphology have been successfully electrospun from aqueous solutions of citral/CD-IC. Thanks to the inclusion complex formed with CDs, the efficient preservation of citral (up to ~80%) in citral/CD-IC-NFs was observed.

View Article and Find Full Text PDF

The main objective of this study was to fabricate poly (ε-caprolactone) (PCL)-based auxetic nanofiber membranes and characterize them for their mechanical and physicochemical properties. As a first step, the PCL nanofibers were fabricated by electrospinning with two different thicknesses of 40μm (called PCL thin membrane) and 180μm (called PCL thick membrane). In the second step, they were tailored into auxetic patterns using femtosecond laser cut technique.

View Article and Find Full Text PDF

Thymol (THY)/γ-Cyclodextrin(γ-CD) inclusion complex (IC) encapsulated electrospun zein nanofibrous webs (zein-THY/γ-CD-IC-NF) were fabricated as a food packaging material. The formation of THY/γ-CD-IC (1:1 and 2:1) was proved by experimental (X-ray diffraction (XRD), thermal gravimetric analysis (TGA), H NMR) and computational techniques. THY/γ-CD-IC (2:1) exhibited higher preservation rate and stability than THY/γ-CD-IC (1:1).

View Article and Find Full Text PDF

The volatility and limited water solubility of linalool is a critical issue to be solved. Here, we demonstrated the electrospinning of polymer-free nanofibrous webs of cyclodextrin/linalool-inclusion complex (CD/linalool-IC-NFs). Three types of modified cyclodextrin (HPβCD, MβCD, and HPγCD) were used to electrospin CD/linalool-IC-NFs.

View Article and Find Full Text PDF

Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images.

View Article and Find Full Text PDF

We have proposed a new strategy for preparing free-standing nanofibrous webs from an inclusion complex (IC) of a well-known flavor/fragrance compound (limonene) with three modified cyclodextrins (HPβCD, MβCD, and HPγCD) via electrospinning (CD/limonene-IC-NFs) without using a polymeric matrix. The experimental and computational modeling studies proved that the stoichiometry of the complexes was 1:1 for CD/limonene systems. MβCD/limonene-IC-NF released much more limonene at 37, 50, and 75 °C than HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF because of the greater amount of preserved limonene.

View Article and Find Full Text PDF

Electrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat.

View Article and Find Full Text PDF

Vanillic acid (VA) found in vanilla and cinnamic acid (CA) the precursor of flavonoids and found in cinnamon oil, are natural plant phenolic acids which are secondary aromatic plant products suggested to possess many physiological and pharmacological functions. In vitro and in vivo experiments have shown that phenolic acids exhibit powerful effects on biological responses by scavenging free radicals and eliciting antioxidant capacity. In the present study, we investigated the antioxidant capacity of VA and CA by the trolox equivalent antioxidant capacity (TEAC) assay, cytotoxicity by neutral red uptake (NRU) assay in Chinese Hamster Ovary (CHO) cells and also the genotoxic and antigenotoxic effects of these phenolic acids using the cytokinesis-blocked micronucleus (CBMN) and the alkaline comet assays in human peripheral blood lymphocytes.

View Article and Find Full Text PDF

Cyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control.

View Article and Find Full Text PDF

We report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF.

View Article and Find Full Text PDF

Electrospinning of polyacrylic acid (PAA) nanofibres (NF) incorporating β-cyclodextrin inclusion complex (β-CD-IC) of quercetin (QU) was performed. Here, β-CD was used as not only the crosslinking agent for PAA nanofibres but also as a host molecule for inclusion of QU. The phase solubility test showed enhanced solubility of QU due to the inclusion complexation; in addition, the stoichiometry of QU/β-CD-IC was determined to be 1:1.

View Article and Find Full Text PDF