Synthetic cis -regulatory modules can improve our understanding of gene regulatory networks. We applied an ensemble approach for de novo cis motif discovery among the promoters of 181 drought inducible differentially expressed soybean (Glycine max L.) genes.
View Article and Find Full Text PDFGenetically encoded biosensors are valuable tools used in the precise engineering of metabolism. Although a large number of biosensors have been developed, the fine-tuning of their dose-response curves, which promotes the applications of biosensors in various scenarios, still remains challenging. To address this issue, we leverage a DNA trackable assembly method and fluorescence-activated cell sorting coupled with next-generation sequencing (FACS-seq) technology to set up a novel workflow for construction and comprehensive characterization of thousands of biosensors in a massively parallel manner.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2021
Pichia pastoris has gained much attention as a popular microbial cell factory for the production of recombinant proteins and high-value chemicals from laboratory to industrial scale. However, the lack of convenient and efficient genome engineering tools has impeded further applications of Pichia pastoris towards metabolic engineering and synthetic biology. Here, we report a CRISPR-based toolbox for gene editing and transcriptional regulation in P.
View Article and Find Full Text PDFMicrofluidic devices with superior microscale fluid manipulation ability and large integration flexibility offer great advantages of high throughput, parallelisation and multifunctional automation. Such features have been extensively utilised to facilitate cell culture processes such as cell capturing and culturing under controllable and monitored conditions for cell-based assays. Incorporating functional components and microfabricated configurations offered different levels of fluid control and cell manipulation strategies to meet diverse culture demands.
View Article and Find Full Text PDFAdaptive laboratory evolution (ALE) has served as a historic microbial engineering method that mimics natural selection to obtain desired microbes. The past decade has witnessed improvements in all aspects of ALE workflow, in terms of growth coupling, genotypic diversification, phenotypic selection, and genotype-phenotype mapping. The developing growth-coupling strategies facilitate ALE to a wider range of appealing traits.
View Article and Find Full Text PDFIn plants, next to the secondary messengers lies an array of signal relaying molecules among which Calmodulins convey the unequivocal alarms of calcium influxes to Calmodulin-Binding Transcription Activators (CAMTA). Upon reception, CAMTA transcription factors decode the calcium signatures by transcribing the genes corresponding to the specific stimulus, thus have direct/indirect engagement in the complex signalling crosstalk. CAMTA transcription factors make an important contribution to the genome of all eukaryotes, including plants, from Brassica napus (18) to Carica papaya (2), the number of CAMTA genes varies across the plant species, however they exhibit a similar evolutionarily conserved domain organization including a DNA-Binding Domain (CG-1), a Transcription Factor Immunoglobulin Binding Domain (TIG), a Calmodulin-Binding Domain (CaMBD/IQ) and several Ankyrin repeats.
View Article and Find Full Text PDFFollowing an in-depth transcriptomics-based approach, we first screened out and analyzed (in silico) motifs in a group of 63 drought-inducible genes (in soybean). Six novel synthetic promoters (SynP14-SynP19) were designed by concatenating 11 motifs, , and (in multiple copies and various combination) with a minimal 35s core promoter and a 222 bp synthetic intron sequence. In order to validate their drought-inducibility and root-specificity, the designed synthetic assemblies were transformed in soybean hairy roots to drive GUS gene using pCAMBIA3301.
View Article and Find Full Text PDFFifteen transcription factors in the CAMTA (calmodulin binding transcription activator) family of soybean were reported to differentially regulate in multiple stresses; however, their functional analyses had not yet been attempted. To characterize their role in stresses, we first comprehensively analyzed the family in silico and thereafter determined their expression pattern under drought. The bioinformatics analysis revealed multiple stress-related -regulatory elements including , , and , 10 unique miRNA (microRNA) targets in transcripts and 48 proteins in GmCAMTAs' interaction network.
View Article and Find Full Text PDFFlavonoids are mainly associated with growth, development, and responses to diverse abiotic stresses in plants. A growing amount of data have demonstrated the biosynthesis of flavonoids through multienzyme complexes of which the membrane-bounded cytochrome P450 supergene family shares a crucial part. However, the explicit regulation mechanism of Cytochrome P450s related to flavonoid biosynthesis largely remains elusive.
View Article and Find Full Text PDFPreviously, it was reported that miR396s interact with growth-regulating factors () to modulate plant growth, development, and stress resistance. In soybean, 11 gma-miR396 precursors (Pre-miR396a-k) were found, and 24 were predicted as targets of seven mature gma-miR396s (gma-miR396a/b/c/e/h/i/k). To explore the roles of the miR396- module in low water availability response of soybean, we analyzed the expression of Pre-miR396a-k, and found that Pre-miR396a/i/bdgk/e/h were up-regulated in leaves and down-regulated in roots; on the contrary, G were down-regulated in leaves and were up-regulated in roots of low water potential stressed soybean.
View Article and Find Full Text PDFPlant microRNAs are small non-coding, endogenic RNA molecule (containing 20-24 nucleotides) produced from miRNA precursors (pri-miRNA and pre-miRNA). Evidence suggests that up and down regulation of the miRNA targets the mRNA genes involved in resistance against biotic and abiotic stresses. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful technique to analyze variations in mRNA levels.
View Article and Find Full Text PDF