GATA4 is a transcription factor that regulates osteoblast differentiation. However, GATA4 is expressed at a higher level in mesenchymal stem cells (MSCs) than in osteoblasts. Therefore, the role of GATA4 in limb bud mesenchyme differentiation was investigated in mice by knocking out Gata4 using Cre-recombinase controlled by the Prx1 promoter (herein called Gata4 Prx-cKO mice).
View Article and Find Full Text PDFTriple-negative breast cancers (TNBCs), which lack specific targeted therapy options, evolve into highly chemo-resistant tumors that metastasize to multiple organs simultaneously. We have previously shown that TNBCs maintain an activated WNT10B-driven network that drives metastasis. Pharmacologic inhibition by ICG-001 decreases β-catenin-mediated proliferation of multiple TNBC cell lines and TNBC patient-derived xenograft (PDX)-derived cell lines.
View Article and Find Full Text PDFOsteosarcoma is a malignant tumor in the bone, which originates from normal osteoblasts or osteoblast precursors. Normal osteoblasts express estrogen receptor alpha (ERα); however, osteosarcomas do not express ERα due to promoter DNA methylation. Here we show that treatment of 143B osteosarcoma cells with decitabine (DAC, 5-Aza-2'-deoxycytidine) induces expression of ERα and leads to decreased proliferation and concurrent induction of osteoblast differentiation.
View Article and Find Full Text PDFGATA4 is a zinc-finger transcription factor that is a pioneer factor in various tissues and regulates tissue-specific gene regulation. In vivo deletion of using Cre-recombinase under the control of the 2.3 kb promoter showed significantly reduced values for trabecular bone properties by microCT analysis of femur and tibia of 14-week-old male and female mice, suggesting GATA4 is necessary for maintaining normal adult bone phenotype.
View Article and Find Full Text PDFGATA4 is a transcription factor that is responsible for tissue-specific gene regulation in many tissues, and more recent studies showed that it is necessary for osteoblast differentiation. Previously, we showed that in vivo deletion of Gata4 using Cre-recombinase under the control of the Col1a1 2.3 kb promoter, showed significantly reduced trabecular bone properties.
View Article and Find Full Text PDFEstrogens attenuate bone turnover by inhibiting both osteoclasts and osteoblasts, in part through antagonizing Runx2. Apparently conflicting, stimulatory effects in osteoblast lineage cells, however, sway the balance between bone resorption and bone formation in favor of the latter. Consistent with this dualism, 17ß-estradiol (E2) both stimulates and inhibits Runx2 in a locus-specific manner, and here we provide evidence for such locus-specific regulation of Runx2 by E2 in vivo.
View Article and Find Full Text PDFWe have recently demonstrated that RUNX2 promoted, and 17β-Estradiol (E2) diminished, association of RANKL with the cell membrane in pre-osteoblast cultures. Here we show that, similar to E2, dihydrotestosterone (DHT) diminishes association of RANKL, and transiently transfected GFP-RANKL with the pre-osteoblast membrane without decreasing total RANKL mRNA or protein levels. Diminution of membrane-associated RANKL was accompanied with marked suppression of osteoclast differentiation from co-cultured pre-osteoclasts, even though DHT increased, not decreased, RANKL concentrations in pre-osteoblast conditioned media.
View Article and Find Full Text PDFThe endocannabinoid system is known for its regulatory effects on bone metabolism through the cannabinoid receptors, Cnr1 and Cnr2. In this study we analysed the mechanical and material properties of long bones from Cnr1(-/-) mice on a C57BL/6 background. Tibiae and femora from 5- and 12-week-old mice were subjected to three-point bending to measure bending stiffness and yield strength.
View Article and Find Full Text PDFEstrogens are important for bone metabolism via a variety of mechanisms in osteoblasts, osteocytes, osteoclasts, immune cells and other cells to maintain bone mineral density. Estrogens bind to estrogen receptor alpha (ERα) and ERβ, and the roles of each of these receptors are beginning to be elucidated through whole body and tissue-specific knockouts of the receptors. In vitro and in vivo experiments have shown that ERα and ERβ antagonize each other in bone and in other tissues.
View Article and Find Full Text PDFInhibition of Runx2 is one of many mechanisms that suppress bone formation in glucocorticoid (GC)-induced osteoporosis (GIO). We profiled mRNA expression in ST2/Rx2(dox) cells after treatment with doxycycline (dox; to induce Runx2) and/or the synthetic GC dexamethasone (dex). As expected, dex typically antagonized Runx2-driven transcription.
View Article and Find Full Text PDFBisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647-labeled risedronate (AF647-RIS), were used to address this question.
View Article and Find Full Text PDF