As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control.
View Article and Find Full Text PDFIn recent years, heavy metals derived from several anthropogenic sources have both direct and indirect detrimental effects on the health of the environment and living organisms. Whole-cell bioreporters (WCBs) that can be used to monitor the levels of heavy metals in drinking and natural spring waters are important. In this study, whole-cell arsenic bacterial bioreporters were immobilized using polycaprolactone (PCL) electrospun fibers as the support material.
View Article and Find Full Text PDFA comprehensive approach is needed to develop multifunctional wound dressing that is simple yet efficient. In this work, Liquidambar orientalis Mill. storax loaded hydroxyethyl chitosan (HECS)-carrageenan (kC) based hydrogel (HECS-kC) and polydopamine coated asymmetric polycaprolactone membrane (PCL-DOP) were used to develop a multifunctional and modular bilayer wound dressing.
View Article and Find Full Text PDFBioadhesives with antimicrobial properties enable easier and safer treatment of wounds as compared to the traditional methods such as suturing and stapling. Composed of natural or synthetic polymers, these bioadhesives seal wounds and facilitate healing while preventing infections through the activity of locally released antimicrobial drugs, nanocomponents, or inherently antimicrobial polers. Although many different materials and strategies are employed to develop antimicrobial bioadhesives, the design of these biomaterials necessitates a prudent approach as achieving all the required properties including optimal adhesive and cohesive properties, biocompatibility, and antimicrobial activity can be challenging.
View Article and Find Full Text PDFArsenic contamination is a critical global problem, and its widespread environmental detection is becoming a prominent issue. Herein, electrospun fibers of cellulose acetate (CA) and polycaprolactone (PCL) were successfully fabricated and used as the support material for immobilization of arsenic-sensing bacterial bioreporter for the first time. To date, no attempt has been made to immobilize fluorescent whole-cell bioreporter cells on electrospun fibers for arsenic detection.
View Article and Find Full Text PDFIn this study, Zn doped hydroxyapatite (Zn HA)/boron nitride nanofiber (BNNF)/poly-ε-caprolactone (PCL) composite aligned fibrous scaffolds are produced with rotary jet spinning (RJS) for bone tissue engineering applications. It is hypothesized that addition of Zn HA and BNNF will contribute to cell viability as well as mechanical and osteogenic properties of the PCL scaffolds. Zn HA was synthesized by mixing Ca and P sources followed by sonication and aging whereas BNNF was obtained by the reaction of melamine with boric acid followed by freeze-drying for annealing of fibers.
View Article and Find Full Text PDFMaking composite scaffolds is one of the well-known methods to improve the properties of scaffolds used in bone tissue engineering. In this study, novel ceramic-based 3D porous composite scaffolds were successfully prepared using boron-doped hydroxyapatite, as the primary component, and baghdadite, as the secondary component. The effects of making composites on the properties of boron-doped hydroxyapatite-based scaffolds were investigated in terms of physicochemical, mechanical, and biological properties.
View Article and Find Full Text PDFUse of injectable hydrogels attract attention in the regeneration of dental pulp due to their ability to fill non-uniform voids such as pulp cavities. Here, gelatin methacrylate/thiolated pectin hydrogels (GelMA/PecTH) carrying electrospun core/shell fibers of melatonin (Mel)-polymethylmethacrylate (PMMA)/Tideglusib (Td)-silk fibroin (SF) were designed as an injectable hydrogel for vital pulp regeneration, through prolonged release of Td and Mel to induce proliferation and odontoblastic differentiation of dental pulp stem cells (DPSC). H NMR and FTIR confirmed methacrylation of Gel and thiolation of Pec.
View Article and Find Full Text PDFVitamin C&E (VtC&VtE)-loaded bilayer wound dressings were prepared using bacterial cellulose (BC) synthesized by Acetobacter species and pullulan (PUL). VtC-containing PUL hydrogels (100 μg/mL) were immobilized onto BC by crosslinking. BC/PUL-VtC was loaded with VtE (100 μM in ethanol) by immersion for 2 h.
View Article and Find Full Text PDFOsseointegration of implants depends on several intertwined factors: osteogenesis, angiogenesis, and immunomodulation. Lately, novel reinforcements allowing faster bonding with osseous tissue have been explored intensively. In this study, we hypothesized the use of boron as a major multifunctional ion to confer versatility to calcium-deficient hydroxyapatite (cHA) synthesized by a wet precipitation/microwave reflux method.
View Article and Find Full Text PDFSimvastatin (SIM)-loaded and human decellularized adipose tissue (DAT)-coated porous hydroxyapatite (HAp) microspheres were developed for the first time to investigate their potential on bone regeneration. Microspheres were loaded with SIM and then coated with DAT for modifying SIM release and improving their biological response. HAp microspheres were prepared by water-in-oil emulsion method using camphene (C H ) as porogen followed by camphene removal by freeze-drying and sintering at 1200°C for 3 h.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
October 2022
Pectin is a polysaccharide extracted from various plants, such as apples, oranges, lemons, and it possesses some beneficial effects on human health, including being hypoglycemic and hypocholesterolemic. Therefore, pectin is used in various pharmaceutical and biomedical applications. Meanwhile, its low mechanical strength and fast degradation rate limit its usage as drug delivery devices and tissue engineering scaffolds.
View Article and Find Full Text PDFThe aim of this study was to develop hydrogel wound dressings made of photocrosslinkable pectin and gelatin with pH dependent release of curcumin, an antimicrobial agent. Methacrylated forms of pectin and gelatin (PeMA and GelMA, respectively) were synthesized, and hydrogels were prepared with different compositions (1:1, 1:2 and 1:3 v/v ratios of PeMA and GelMA) by UV exposure. Pure GelMA was used as control group.
View Article and Find Full Text PDFSkin tissue loss that occurs by injury and diseases can turn into chronic wounds as a result of complications alongside infection. Chronic wounds fail to heal by themselves and need advanced treatments like engineered wound dressings and regenerative scaffolds. In this study, a novel, natural origin, bilayer electrospun scaffold was produced from pullulan (PUL) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) biopolymers.
View Article and Find Full Text PDFIn this study, micelles composed of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) copolymer (mPEG-b-PCL), which has ionically conjugated lithocholic acid (LCA) and providing pH sensitive release of LCA in acidic media, were prepared as drug carrier devices for cancer therapy. Micelles were produced by co-solvent evaporation method at two different temperatures (60 °C and 25 °C) and coded as LCA**M and LCA**M, respectively). Hydrodynamic diameters were 86.
View Article and Find Full Text PDFNanomaterials have received increasing attention due to their controllable physical and chemical properties and their improved performance over their bulk structures during the last years. Carbon nanostructures are one of the most widely searched materials for use in different applications ranging from electronic to biomedical because of their exceptional physical and chemical properties. However, BN nanostructures surpassed the attention of the carbon-based nanostructure because of their enhanced thermal and chemical stabilities in addition to structural similarity with the carbon nanomaterials.
View Article and Find Full Text PDFMimicking extracellular matrix (ECM) of native tissue by tissue-engineered constructs is critical to induce regeneration of the damaged site. In this study, coaxial electrospinning of core/shell poly(methyl methacrylate) (PMMA)/silk fibroin (SF) fibers was optimized for the first time to provide ECM-like microenvironment for new tissue formation by utilization of a new collector design for obtaining homogeneously deposited mats from the collector screen. SF-shell was produced to increase cell-affinity of fiber surfaces whereas PMMA-core was designed to support the tissue mechanically during regeneration.
View Article and Find Full Text PDFThis study describes the synthesis, surface analysis, and biological evaluation of bioactive titanium surfaces. The aim was to achieve an improved effect on osteoinduction in dental and orthopedic implants. For this purpose, a chemistry was developed, which allows to bind the bioactive cyclopeptide cRGDfK covalently to biomedically used titanium via polyethylene glycol linkers of different lengths.
View Article and Find Full Text PDFRecently, functional dressings that can protect the wound area from dehydration and bacterial infection and support healing have gained importance in place of passive dressings. This study aimed to develop temporary and regenerative xanthan/gelatin (XGH) and keratin/xanthan/gelatin hydrogels (KXGHs) that have high absorption capacity and applicability as a wound dressing that can provide local delivery of Vitamin C (VC). Firstly, xanthan/gelatin hydrogels were produced by crosslinking with different glycerol concentrations and characterized to determine the hydrogel composition.
View Article and Find Full Text PDFInjectable systems receive attention in endodontics due to the complicated and irregular anatomical structure of root canals. Here, injectable Tideglusib (Td)-loaded hyaluronic acid hydrogels (HAH) incorporated with Rg1-loaded chitosan microspheres (CSM) were developed for vital pulp regeneration, providing release of Td and Rg1 to trigger odontoblastic differentiation of human dental pulp stem cells (DPSC) by Td and vascularization of pulp by Rg1. The optimal concentrations were determined as 90 nM and 50 μg/mL for Td and Rg1, and loaded in HA and CSM in HAH, respectively.
View Article and Find Full Text PDFBioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped HA that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HA and PCL-PEG-PCL copolymer were successfully synthesized.
View Article and Find Full Text PDFHigh energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone.
View Article and Find Full Text PDFBiocompatible dicalcium phosphate (DCP) cements are widely used as bone repair materials. In this study, we aimed to investigate the impact of different amounts of sodium alginate (SA) on the microstructural, mechanical, and biological properties of DCP cements. Beta-tricalcium phosphate (β-TCP) was prepared using a microwave-assisted wet precipitation system.
View Article and Find Full Text PDF