Cancer research calls for new approaches that account for the regulatory complexities of biology. We present, in this study, the differential transcriptional regulome (DIFFREG) approach for the identification and prioritization of key transcriptional regulators and apply it to the case of renal cell carcinoma (RCC) biology. Of note, RCC has a poor prognosis and the biomarker and drug discovery studies to date have tended to focus on gene expression independent from mutations and/or post-translational modifications.
View Article and Find Full Text PDFPituitary neuroendocrine tumors (PitNETs) are the second most common type of intracranial neoplasia. Since their manifestation usually causes hormone hypersecretion, effective management of PitNETs is indisputably necessary. Most of the non-functioning PitNETs pose a real challenge in diagnosis as they grow without giving any signs.
View Article and Find Full Text PDFAlthough many studies have been conducted on single gene therapies in cancer patients, the reality is that tumor arises from different coordinating protein groups. Unveiling perturbations in protein interactome related to the tumor formation may contribute to the development of effective diagnosis, treatment strategies, and prognosis. In this study, considering the clinical and transcriptome data of three Renal Cell Carcinoma (RCC) subtypes (ccRCC, pRCC, and chRCC) retrieved from The Cancer Genome Atlas (TCGA) and the human protein interactome, the differential protein-protein interactions were identified in each RCC subtype.
View Article and Find Full Text PDFRenal cell carcinomas (RCCs) are among the highest causes of cancer mortality. Although transcriptome profiling studies in the last decade have made significant molecular findings on RCCs, effective diagnosis and treatment strategies have yet to be achieved due to lack of adequate screening and comparative profiling of RCC subtypes. In this study, a comparative analysis was performed on RNA-seq based transcriptome data from each RCC subtype, namely clear cell RCC (KIRC), papillary RCC (KIRP) and kidney chromophobe (KICH), and mutual or subtype-specific reporter biomolecules were identified at RNA, protein, and metabolite levels by the integration of expression profiles with genome-scale biomolecular networks.
View Article and Find Full Text PDF